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ABSTRACT
In the summer of 2009, the project entitled Utilization of Earth to Air Heat Exchangers 
for Solar Greenhouses pre Heating and Performance Analysis (UEAHESGHPA) in the 
Ege University Project No: 09GEE003 was launched. The solar greenhouse building  
is expected to have an annual cooling load of 12MWh. For decreasing the energy 
consumption rate of the system the authors suggest a hybrid system, incorporating a solar 
photovoltaic cell system (PV) assisted Earth-to-Air Heat Exchanger, which was developed 
in 2010. The principal idea is to use the PVs to meet the electricity expenses of the fan 
during summer cooling seasons when the required summer peak load cooling can be 
generated very efficiently and cheaply. The first three cooling seasons were monitored;  
the results of which were then presented. (See Appendix 1 for nomenclature.)
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1. INTRODUCTION
Direct use of the underground as heat source, heat sink, and heat storage has a long history 
extending from thousands of years ago to the present. These traditions have been modified 
to assist in the current need to achieve energy efficient building technologies. Natural energy 
sources seem ready again to play a major role in the effort to achieve large reductions in energy 
usage in existing and new buildings (Morofsky, 2003).This requirement will be clear as the 
response to the post-2012, post-Kyoto world is formulated (Morofsky, 2005). The Kyoto 
protocol stimulated countries worldwide to reduce CO2 production, which resulted in two 
important measures. Firstly, there are now efforts focused on producing electricity with higher 
efficiency. Old power plants are more rapidly phased out and replaced with new, more efficient 
plants. Secondly, attention was drawn to energy use in general, bringing a more efficient use of 
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energy in production processes, buildings, etc. This not only reduced the consumption of elec-
tricity, but also lowered the spending of primary energy sources (De Paepe and Janssens, 2003). 

According to US EPA (Environmental Protection Agency), GeoExchange systems are the 
most energy-efficient, environmentally clean, and cost effective space conditioning systems 
available. EAHE systems are among these GeoExchange systems, also called underground air 
tunnels or ground tube heat exchangers, and prove to be an interesting technique to reduce 
energy consumption in a building. 

In this paper, the operation and Coefficient of Performance (COP) of an EAHE system 
are monitored. The results of the first three cooling seasons of operation of the system are 
presented, and the authors present an overview of these monitoring results for the 2009–2011 
cooling seasons. Using these measurements, an attempt will be made to evaluate the original 
design; the motivation behind the present work.

The main objectives of the present case study are (i) to give a recent energetic perfor-
mance assessment of the entire system into heat flux of density, q (W/m2) (Popiel et al., 2001; 
Popiel and Wojtkowiak, 2004) transferred to soil, monthly cooling loads, and (ii) to investi-
gate and monitor the COP value (energetic efficiency) of EAHE as a case study. 

2. DESCRIPTION OF CASE STUDY
A schematic diagram of the experimental system is given in Figure 1. This system mainly 
consists of six separate circuits: (i) the converter, (ii) the 0.9 kW PV cells, (iii) the inverter, 
(iv) the fan (air blower) circuit for greenhouse cooling, (v) the ground heat exchanger 
(underground air tunnel or EAHE), (vi) the greenhouse. The PV assisted EAHE system was 
installed at the Solar Energy Institute of Ege University (latitude 38° 24’ N, longitude 27° 
50’ E), Izmir, Turkey. A Solar greenhouse was positioned towards the South along the North-
South axis it was to be conditioned during the summer and winter seasons according to the 
needs of the agricultural products to be grown in it. Figure 1 shows a schematic of the system 
which utilizes an underground galvanized pipe in combination with a blower to keep the 
greenhouse temperature at the set condition. A positive displacement type of air (twin lobe 
compressor) blower of 736 Watt capacity and volumetric flow rate of 5300m3/h was fitted 

FIGURE 1. Basic simplified PV assisted EAHE system schema adopted from (Yildiz et al, 2011).
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with the suction head positioned in the southwest corner of the greenhouse (Ozgener and 
Ozgener, 2010a-d, Ozgener and Ozgener, 2011; Ozgener et al., 2011, Yildiz et al., 2011, 
Yildiz et al., 2012, Ozgener et al., 2013).

3. ANALYSIS OF EAHE SYSTEM
The design of an Earth-to-Air Heat Exchanger (EAHE) requires knowledge of its total thermal 
resistance (RTot) and temperature distribution in ground, as well as defining heat extraction or 
heat rejection loads for successfully heating and cooling building applications. In this research, 
a 47m long horizontal, 56cm nominal diameter U-bend buried galvanized experimental 
EAHE was designed and installed in the Solar Energy Institue, Ege University, Izmir, Turkey 
for study (Ozgener et al., 2011).

3.1. Efficiency
The Coefficient of Performance of the overall cooling system (COP) is the ratio of the green-
house cooling load to the work input to the blower (fan) which assumes that the sensible 
cooling load is equal to the cooling capacity of the tunnel (EAHE) (Ozgener and Ozgener, 
2010a-d, Ozgener and Ozgener, 2011; Ozgener et al., 2011).

	 COP = ​ 
Q̊ r ___ 
W̊b

 ​ = ​ 
ṁacp(Ti,a – To,a)  ____________ 

W̊b
  ​ = ​ 

qLL
 ___ 

W̊b
 ​ = 

​( ​ (Tf  – Ts)
 ________ 

RTot
  ​ )​L

W̊b
	 (1)

where in most cases “qL” means “qL is Q̊ r load per unit length of the Earth-Air-Earth 
exchanger,” as given below

	 qL =  ​ 
Q̊ r ___ 
L

 ​	 (2)

In this analytical method, RTot is composed of the convection resistance inside the pipe 
(Rconvec), conduction resistance of the pipe wall (Rpipe), and conduction resistance of the soil 
(Rsoil). Thus RTot can be presented by Eq (3)

	 RTot = Rconvec + Rpipe + Rsoil	 (3)

Eq. (3) is a very simplified model defining of total thermal resistance,

	 Tf – Ts = qL × RTot	 (4)

where qL is the heat rejection (discharge) rate per unit tunnel (pipe) length.

3.2. Defining Heat Flux of Density
For determination of the thermal interaction of engineering systems such as buildings, pipe-
lines, ground heat storage, and heat pump ground heat exchangers with the ground, precise 
knowledge of the natural ground temperature distributions are required. The ground tempera-
ture distribution is affected by the following factors: (i) structural and physical properties of 
the ground, (ii) ground surface coverage, and (iii) climate interaction determined by air tem-
perature, wind, solar radiation, air humidity and rainfall (Popiel et. al. 2001). The recorded 
experimental thermal data of various parameters were taken from the system. The data does 
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not belong to one day or measurement; all data reflect average actual values of the system 
under different operating conditions. 

Heat flux of density q, W/m2 transferred to soil can be obtained through the following 
equation

	 q = –k ​ ∂T ___ ∂x ​ = ​ –1 ___ 
Rsoil

 ​ ​ ∂T ___ ∂x ​ 	 (5)

In this case, x is depth below the ground surface and its maximum value is 3m, k is heat con-
ductivity of soil (W/mK), and ∂T is ground (soil) temperature differential in degrees Celsius. 

3.3. Measurements and Uncertainties
In the present study, the temperatures, air flow rates, voltages, and currents were measured 
with the appropriate instruments described previously. The data collection was made at an 
interval of every second and the hourly average values are also recorded. As known, errors and 
uncertainties in data recording and experiments may arise from instrument selection, instru-
ment condition, instrument calibration, environment, observation, and reading and test plan-
ning (Witte et al., 2005; Ozgener and Ozgener, 2008, 2009; Ozgener, 2010). An uncertainty 
analysis was needed to prove the accuracy and reliability of the experimental data taken. The 
resulting total uncertainties of the measurements are given in Table 1. In the experiments, IR 
effects on air temperature measurements and the errors in the thermal properties because of 
non uniform conditions in the soil were neglected. The data was recorded by using an Elimko 
E-680 data logger. E-680 series universal data loggers are new generation microcontroller 
based instruments compatible with IEC (International Electrotechnical Commission) 668 
standards. The E-680 series indicates measurements from 32 different points on the instru-
ment display and determines the alarm conditions by comparison of two set points for each 
channel. The instruments can be connected to an RS-485 communication line and the data 
can be collected and stored in a centrally located PC. It has a resolution of 0.1°C, 1 W/m2 for 
temperature and an accuracy of 0.5% (Ozgener and Ozgener, 2010a,b); TESTO 6621 tem-
perature and relative humidity (RH) transmitters have ±0.5°C, and ±2.5% RH, respectively. 
Air flow velocities were measured by a Lutron AM-4206M anemometer, and its accuracy and 
resolutions are ±2% 0.2 m/s, 0.01 m/s, respectively. 

5. RESULTS AND DISCUSSION
In the study the recorded experimental thermal data of various parameters (e.g., temperatures, 
relative humudities, and volumetric flow rates) were taken directly from the system.

The thermodynamic properties of the air are based on the actual data taken from the 
system measured and recorded average value of 2009, 2010, and 2011 cooling seasons, respec-
tively. The thermodynamic properties of the air were obtained from general thermodynamic 
tables and software. The fan in operation in the experiment may vary depending on the 
cooling days and operating strategy. 

According to experimental results, normalized air density was assumed to be 1.196 kg/
m3; the monthly distribution of average temperature of air flowing in buried EAHE measured 
June 2009 and October 2011 is illustrated in Table 2 along with the heat rejection rates of the 
system which were calculated for each state. Using equation (1), the minimum seasonal COP 
value of the system is determined to be 11.6. 
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5.1. Monitoring Results
Average monthly COP monitoring results of the system are given in Figure 2. A number of 
variables have been monitored with a relatively high frequency from June 2009 until October 
2011. The study focused on the heat rejection rates, air temperatures and its mass flow rates, 
heat flux of densty, etc. The monitored COP values are obtained for a range from 1 to 10 for 
different ambient temperature values for a better coverage and presentation of how the varying 
reference state temperature affects the performance of the system in terms of energy demands.

TABLE 1. Total average uncertainties of the measured and calculated parameters of the system.

Item no

Measured quantities

Description Unit Total uncertainty (%)

1 Temperature by using PT 100 resistant 
thermocouples and transmitters

ºC ±0.5–1

2 Temperature by using infrared thermometer ºC ±1.00

3 Air flow velocity by anemometer m/s ±1.0

4 Relative humidity (RH) transmitters RH ±2.5

Item no

Derived quantities

Description Unit Total uncertainty (%)

1 Mass flow rate kg/s ±2

2 Energy rate kW ±1

3 Heat flux of density W/m2 ±5

4 Energy efficiency (COP) – ±4

Uncertainty in reading values of table ±0.20

FIGURE 2. Average monthly monitored values of COP of the system for between 2009 and 2011 
cooling seasons.
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As can be seen from Figure 2, average monthly COP values can be found between 9 and 
14. COP values are evaluated in terms of the system by using Eq. (1). The highest COP value in 
the 2010 cooling season occurred in June, yet the lowest COP value occurred during the 2009 
heating season in September. In addition, the heat rejection rate (produced cooling load) average 
heat flux value is given in Table 2. It is obvious from the table that the highest produced cooling 
load occurs in 2010. As shown in Fig. 2, the data obtained during the measurements reveal that 
the mean cooling capacity of the EAHE is about 6 kW, and the amount of energy that can be 
produced is nearly 12 MWh for 6 months or a cooling season.

The heat flux density is a function of the distribution of soil temperature and the effect 
of soil content. In this case, heat flux of density was defined by using Eq (5) and the Rsoil value 
(Ozgener et. al, 2011). A recorded experimental thermal data of 3m depth of ground and 
ground surface were taken from the system. In 2009, the average heat flux of density q, W/m2 
transferred to the soil was found to be 4.75W/m2 during the monitoring of three consecutive 
cooling seasons. The mean value of heat flux density was measured as 4.35W/m2 for the 2010 

TABLE 2. Monitoring of thermodynamics specifications of the system between 2009 and 2011.

Average 
Value

Cooling Season

June 2009–
October 2009

May 2010–
October 2010

May 2011–
October 2011

Cooled Days 133.3 130 150 120

Shut off period for regenerate to 
soil (hours)

1948 1812 2160 1872

Intervals with valid data 29480 15000 43200 30240

Average inlet temperature (°C) 33.3 32 35 33

Average outlet temperature (°C) 27.6 27 28 28

Average temperature of air 
flowing in EAHE (°C)

30.5 29.5 31.5 30.5

Average circulated air mass flow 
rate (kg/s)

1.58 1.70 1.39 1.64

Yearly total produced sensible 
cooling load (MWh)

11.1 11.1 14.0 8.2

Average heat flux of density q, 
(W/m2)

4.43 4.75 4.35 4.2

Total consumed electricity (kWh) 873.6 915 1000 706

Yearly total rejected thermal load 
to soil (MWh)

11.1 11.1 14.0 8.2

Yearly total average mass flow 
rate of condensed water vapor 
(kg/season)

7440 7200 8640 6480

Percentage of the energy saving 
by using PV

26 — 19 21

Real availability (%) 99 99 99 99

Technical availability (%) 95 95 95 95
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cooling season. When the variation of soil temperature measured for 6 months between May 
and October was examined taking account of the seasons, it was found that the heat flux was 
high in spring months, reduced in the summer, and reached its minimum level (0.88 W/m2) 
in July 2011. The maximum heat flux density was 4.6 W/m2 in May 2011. The yearly average 
heat flux densities are illustrated in Table 2.

In the present study of the system, there were repetitive machine faults which occurred on 
the electric, electronic grid fed and mechanic control of the system. A considerable number of 
the types of faults and problems, such as electronic automation, over and lower load electricity 
problems, mechanic system faults, and other problems were experienced. For this reason, we 
observed different COP values.

It can be said that by removing all electric, electronic, and mechanic defects the failure 
rates of the PV assisted EAHE system can result in improvement of lifetime and real availability 
of the system. The technical availability is the ratio of operation hours to total machine hours 
available in a heating season. The technical availability of the system is almost constant, which 
is around 95–100%, in a year. This is because of the electric-electronic automation faults. 

The real availabilities of the system has been analyzed based on total machine hours in 
the month, excluding machine hours lost due to regenerate to soil. The real availability is the 
ratio of generation hours to total machine hours. The real average availability of the system is 
less than 100%, in a year. This is due to the electric-electronic automation faults during the 
cooling period. 

5. CONCLUSIONS
In this study, the authors have presented a general overview of the monitoring data. The 
EAHE at Ege University has, during its three cooling seasons of operation, rejected 33.3MWh 
of heat into the ground (soil). The heat flux density was defined by using the recorded experi-
mental thermal data of 3m depth of ground and ground surface, and its average value was 
found to be 4.43W/m2. Experimental results also show that the mean cooling COP value was 
determined to be 12.4 for 3 years of successive cooling seasons. 
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APPENDIX 1: NOMENCLATURE
COP	 cooling coefficient of performance of the system (dimensionless)
Cp	 specific heat of the air (kJ/kg K)
k	 coefficient of thermal conductivity of pipe (W/m°C)
L	 total length of earth air earth heat exchanger length (m)
ṁa	 mass flow rate of air (kg/s)
q	 heat flux of density (W/m2)
qL	 discharged heat rate in Watt per meter earth air earth heat exchanger length (W/m)
Q̊ r	 rate of heat discharge (kW)
Rconvec	 convection resistance inside the pipe per unit length (K-m/W)
Rpipe	 conduction resistance of pipe per unit length (K-m/W)
Rsoil	 conduction resistance of soil per unit length (K-m/W)
RTot	 total thermal resistance of earth air heat exchanger per unit length (K-m/W)
T	 temperature (K, °C)
Tf	 average temperature of air flowing in buried U-tube (K, °C)
Ti, a	 EAHE inlet temperature of air (K, °C)
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T0, a	 EAHE outlet temperature of air (K, °C)
Ts	 soil temperature (K, °C)
W̊b	 work rate or power of blower (fan) (kW)
x	 depth below the ground surface (m)

Abbreviations
EAHE	 Earth to Air Heat Exchanger
EPA	 Environmental Protection Agency
IEC	 International Electrotechnical Commission
PV	 Solar Photovoltaic Cell Systems
RH	 Relative Humidity
UEAHESGHPA � Utilization of Earth Air Heat Exchangers for Solar Greenhouses pre Heating and 

Performance Analysis
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