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ABSTRACT
The most suitable intervention for energy rehabilitation of historical buildings has to 
reach both the goal of the optimization of the energy saving and the preservation of the 
original characteristics of the building. The present work is related to refurbishment and 
energy rehabilitation of an historical building dating back to 15th century. The 
building complex under study is an ancient residential courtyard building located in 
Northern Italy near Verona. The strategies have been focused on the building envelope 
and energy supply systems respecting both the regulatory constraints imposed by 
preservation of historical buildings and, where possible, the current national legislation 
about the building energy efficiency. This result was achieved only through the 
identification of best solutions based on mutual compatibility and optimization of the 
performance of the building envelope and the HVAC systems. 

In the design phase, the thermal performance of the building for both winter and 
summer periods have been evaluated by dynamic computer simulations. It has been 
shown that adequate interventions focused on the building envelope and HVAC systems 
reduces the energy consumption in a significant way. Further, it has been shown 
through economical analysis that extra-costs for energy retrofit measures paid back 
quickly during the life span of the building. Historical buildings are characterized by 
unique and specific characters that could be preserved, also upgrading them to modern 
requirements. This study demonstrates how it is possible to intervene effectively (and 
correctly by the historical and architectural point of view) on the energy performance  
of ancient buildings. By applying innovative techniques and technologies, in fact,  
it is possible to achieve high energy efficiency levels, without affecting the original 
architectural appearance and value. The methodology presented can be an interesting 
case study for all those building interventions where energy, cultural and historical 
issues intersect.
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1. INTRODUCTION
According to the EU Directives on the energy performance of buildings, buildings of residen-
tial and commercial sectors account for 40% of total energy consumption in the European 
Union (EPBD 2002; EPBD 2010). The final energy consumption in Italy for the civil sector 
absorbs more than 31% of total energy produced (ENEA 2008). The residential sector alone 
covers about 21% of total national energy consumption (Balaras et al. 2007) and in particular 
in this sector, heating covers about 70% of total consumption (ENEA 2007).

The average annual energy consumption of residential building for heating in the EU 
varies from 150 to 230 kWh/m2 (47 to 73 kBtu/h ft2) according to different climatic zones 
(Balaras et al. 2000). A recent study (Cantin et al. 2010) shows that the annual heating energy 
consumption of existing dwellings in France varies from 196 to 210 kWh/m2 (62 to 66 
kBtu/h ft2). The annual energy consumption for heating in Italian residential buildings can 
be estimated about 120–130 kWh/m2 (38–41 kBtu/h ft2), while for Northern Italy this value, 
corresponding to existing national building stock (ENEA 2008; Regione Lombardia 2008; 
Politecnico di Torino 2009), can be considered about 170–180 kWh/m2 (54–57 kBtu/h ft2). 
Considering an average efficiency of the HVAC system equal to 75–80%, it can be estimated 
that the annual energy demand in Northern Italy (AIPE 2009) is around 130–140 kWh/m2 
(41–44 kBtu/h ft2). In addition, within buildings, one of the fastest growing sources of new 
energy demand is for cooling, however, there are no reliable data available in this respect. This 
growth is especially fast in Southern European countries, but is significant also in the Central 
European ones.

In order to meet the targets of the ‘Kyoto Protocol’ and the successive action ‘Climate 
and Energy 20-20-20’, established by European Council in 2007 for the reduction of energy 
consumption, increase of energy efficiency and use of renewable sources in the building sector, 
it is necessary to increase significantly the energy performance of new buildings, and at the 
same time to rehabilitate the existing stock. It should be mentioned that in Italy new houses 
built each year represent less than 2% of the total national housing stock (ISTAT 2001).

The EPBD recast (EPBD 2010) notes that energy performance requirements of build-
ings should be set with a view to achieving the cost-optimal balance between the investments 
involved and the energy costs saved throughout the lifecycle of the building. Furthermore, in 
consideration of the long renovation cycle for existing buildings, the directive prescribes that 
existing buildings that are subject to major renovation, should meet minimum energy perfor-
mance requirements.

The intervention on existing buildings certainly implies careful considerations, in par-
ticular the historical ones, which have unique and specific characters that must be preserved. 
In this regard, it should be noted that almost 20% of Italian buildings were built before 1919, 

Nomenclature
U — Thermal transmittance (W/m2K)
Mf — Superficial thermal mass (kg/m2)
f — Decrement factor (-)
ϕ — Time lag (h)
Yie — Periodic thermal transmittance (W/m2K)
g — Solar heat gain coefficient (SHGC)
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and today more than 30% of the buildings are aged 50 years and above (ISTAT 2001). The 
first Italian law on energy savings in buildings was established in 1976 (Law 373 1976). The 
premises built before that date are generally characterized by low energy performance levels 
and represent more than 64% of all Italian buildings (ISTAT 2001).

According to the Italian law, a building can be considered an historical construction after 
50 years of existence (D.Lgs. 490 1999). In particular, if the building represents an historical 
evidence of the human civilization, can fall in the category of cultural heritage and landscape 
and therefore is subject to preservation. In general, the constraints regard exterior appear-
ance and morphology of the building, preservation of original envelope openings (doors and 
windows) and materials, maintaining artistic and decorative elements (cornices, friezes, etc.). 
These items could be in conflict with energy retrofit measures, such as insulation of walls, 
double glazing windows, innovative HVAC systems etc. Therefore, until today, the energy sav-
ing has been slow to appear in the subject area of restoration.

The present work is related to energy rehabilitation of an historical building dating back 
to the 15th century. The building complex under study is a residential courtyard and is located 
in Northern Italy near Verona. The strategies have been focused on the building envelope and 
energy supply systems respecting the regulatory constraints imposed by preservation of his-
torical buildings and referring, even if not mandatory, to the current national legislation about 
the building energy efficiency. The thermal performance of building for both winter and sum-
mer periods have been evaluated by dynamic computer simulations. It has been shown that 
appropriate and targeted interventions focused on the building envelope and HVAC systems 
of an ancient historical building could enhance its energy performance, also operating com-
patibly with strong preservation constraints.

2. BUILDING ENERGY PERFORMANCE STANDARDS
Italian laws regarding the energy efficiency for buildings are very similar to the standards of 
other EU countries and basically define the limits to primary energy consumption for win-
ter heating and some requirements to limit overheating in summer. Those limits for winter 
heating are referred to the building envelope and HVAC systems efficiency and their compli-
ance have to be guaranteed through the application of steady state calculation methods. The 
designers have also to consider additional parameters like maximum U-value of opaque and 
glazed surfaces and the average global seasonal efficiency of the thermal system. More recent 
law amendments in Italy, derived from the implementation of the EU Directive, extends the 
national regulation to summer cooling and promote the use of renewable energy sources.

Further, it should be noted that for the estimation of summer cooling demand, the steady 
state methods are not reliable and therefore it is more useful to carry out the analysis through 
the instruments using dynamic simulation methods. These instruments are capable of predict-
ing more accurately the effect of thermal mass of building envelope on the energy demand, 
an important aspect for the summer cooling demand. It should be further mentioned that the 
Italian legislation on energy saving in buildings provides the possibility to perform the calcula-
tion of thermal energy requirements for heating and cooling by detailed simulation methods, 
which allow to take proper account of the dynamic phenomena. The use of these methods is 
always possible and sometimes preferable provided that hourly climate data of the specific site 
are available (UNI-TS 11300 2008).
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The Italian basic building energy efficiency Law (Law 10 1991) was supplemented by 
the implementation of the national transposition of EBPD in 2005 and revisions in 2007 
(D.Lgs. 192 2005; D.Lgs. 311 2006) and in 2009 (DPR 59 2009). The current law on energy 
saving in buildings defines new prescriptive and performance requirements in relation to the 
specific climatic conditions and building morphology. These requirements do not apply to 
buildings that fall under protected historical or cultural buildings where requirements compli-
ance would lead to an unacceptable alteration of their original character or appearance with 
particular reference to historic and artistic character (D.Lgs. 311 2006).

It should be noted that in many cases, exclusion from obligation is disingenuously 
exploited to reduce intervention costs. However, by adopting the most appropriate solutions, 
through an accurate analysis and design process, it is still possible to act effectively even on the 
energy performance of ancient buildings, without compromising their historical significance 
and appearance. In this work a representative case history is explained. Figure 1 shows the 
refurbished case study building.

3. CASE STUDY BUILDING COMPLEX
The analyzed building complex is an example of the Venetian court (Fig. 2). The building is 
located in Sona, near Verona (latitude 45° 26' N, longitude 10° 49' E and altitude 169 m). 
The complex, known as “Corte Montresora”, is a cluster of buildings that grew in different time 
periods in the past related to the needs of life and work (Gragnato 2003)

The rehabilitation project was commissioned by the society Cormorano91 S.r.l, and was 
realized by the collaboration among the architect Carlo Pession from Pession Associate Studio 
for architecture design, Politecnico di Milano for the energy and environmental design, and 
Detraco Engineering for HVAC system design.

The limit values by law for primary energy consumption for winter heating (EPi), the 
average global seasonal efficiency of the thermal system (ηg), U-value of opaque and glazed sur-
faces for a building similar to the case study is located in Climatic Zone E are shown in Table 1.

For a proper building design, one should also pay attention to the control of summer 
comfort conditions and efforts should be made to reduce the energy requirements during the 

FIGURE 1. Refurbished case 
study building.
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hottest months of the year, which strongly impacts the total consumption of the building sec-
tor. In this analysis, however, this issue was not found critical since the external walls are of 
considerable thickness and thermal mass leads to lower summer cooling demand. In fact, the 
high thermal inertia tends to keep the indoor climate at relatively constant temperature, and 
avoid extreme temperature changes that can be recorded outside. 

However, the new legislation includes the introduction of shading elements for glazed 
surfaces and the use of thermal mass structures not only for vertical but also horizontal sur-
faces. In relation to the latter issue, the law provides for compliance with a minimum value of 
surface mass of 230 kg/m2 irrespective of the type of surface. This requirement only applies to 
the climatic zones characterized by an average irradiance on the horizontal plane higher than 
or equal to 290 W/m2 corresponding to the month of maximum solar radiation, and therefore 
does not apply to our case study, where the corresponding value is lower. However, in the 
present study, the factors affecting the summer comfort are considered, in order to further 
increase the overall energy performance.

Moreover, the law foresees the use of renewable energy sources to produce heat and elec-
tricity for all categories of buildings. For new buildings or renovation of existing HVAC sys-
tems, at least 50% of domestic hot water should be produced from renewable sources.

The new rehabilitation project is an articulated building with ten residential units char-
acterized by different distribution and orientation and organized on one or more levels. The 

FIGURE 2. Corte Montresora aerial view: before (left) and after intervention (right).

TABLE 1. The limit values for Climatic Zone E (D.Lgs. 311 2006).

EPi (kWh/m2year) 44.8

ηg (%) 74.4

U-value limits (W/m2K)

•	External wall 0.37

•	Roof (flat or sloped) 0.32

•	Floor exposed to outside air or to non-heated zone 0.38

•	Windows 2.4
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units are distributed to form a “C”, there is one arm extended to north with six residential 
units and another arm extended to south with two other units. The connection structure is 
oriented from north to south and includes an additional 2 units. Figure 3 shows the location 
of various residential units, according to a scheme by different color scale identification.

The gross volume of living space is about 6,687 m3, with a total loss surface area approxi-
mately of 3,200 m2 and a S/V ratio equal to 0.47. The net volume of living space is approxi-
mately 4,796 m3 and the total useful surface area of the complex is approximately 1,648 m2. 
The geometrical data of building complex is shown in Table 2.

It is assumed that the space will be occupied by about 44 people. The apartments feature 
double-facing exposition and the openings are not too large (Fig. 4), the ratio between trans-
parent and opaque surface of the facade is about 12%.

The complex is included in the list of environmental heritage of the territory of Verona. 
Therefore, its rehabilitation shall be characterized by several restrictions on the possibilities 
of interventions. In general, it could be said that these limits affect in particular the build-
ing envelope but not the HVAC system choices, if these do not interfere significantly with 
architectural characters. The evaluation and design process, described in the paper, have been 
developed under these assumptions.

FIGURE 3. Identification of 
residential units.

TABLE 2. Geometrical data of building.

Total loss surface area 3,200 m2

Total windows surface area 188 m2

Floor area (gross) 2,200 m2

Floor area (net) 1,648 m2

Gross thermal zone volume 6,687 m3

Net thermal zone volume 4,796 m3

Surface to volume ratio (S/V) 0.47
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4. EVALUATION METHODOLOGY 
With the aim of optimum energy intervention, a first analysis was carried out on the old 
structure to identify briefly the main design considerations and possible interventions and 
quantify the benefits in terms of achievable energy savings. To achieve a high level of perfor-
mance, it was decided to focus on the building envelope as well as HVAC systems in an holis-
tic and systemic manner.

The work was carried out using innovative design methodology based on integrated 
building design, a process of design in which multiple disciplines and seemingly unrelated 
aspects of design are integrated in a manner that permits synergistic benefits to be realized. 
The goal is to achieve high performance and multiple benefits at a lower cost than the total for 
all the components combined. A key to successful integrated building design is a multidisci-
plinary approach.

Conventional building design tends to be linear (Fig. 5) with little interaction among 
the different designers/experts involved in the project. The design process proceeds when the 
architect creates a design and hands it off to the engineers who design the systems (sometimes 
independent of each other), and then pass the design off to the contractor. This approach fails 
because it is unable to deliver “high performance” buildings—ones that optimize energy effi-
ciency, incorporate appropriate security measures, and achieve peak occupant productivity—all 
within the prescribed budget. Employing conventional design can also result in poor energy 
performance, harmful environmental impact, and higher operating maintenance costs.

FIGURE 4. Architectural plan type.
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Integrated Building Design is a holistic approach to the design of the built environment. 
It is driven by collaboration between specialized professionals in fields such as architecture, 
lighting, HVAC, power distribution, interior design, acoustics, landscape design, structures, 
and construction. Integrated Building Design projects may be large or small, new construc-
tion or renovation, and of any architectural style.

The design process of high performance building is not linear, but circular and iterative 
(Fig. 6). The proposal for architectural design is evaluated using simulation models, which 
provide detailed indications on the performance of the building envelope and HVAC sys-
tems, intended as a single system. From the results the energy expert extracts data that allow 
architect as well as the HVAC system engineer to formulate corrective or alternative propos-
als adapted to their needs. This circular process is repeated till a satisfactory solution in terms 
of aesthetic, functional, energy and cost is achieved. A solution that will inevitably be tied to 
specific climatic conditions and natural resources (Butera 2008).

In this specific case, the energy performance analysis was carried out according to the fol-
lowing evaluation methodology:

•	 analysis of the existing building structure;
•	 selection of possible interventions on building envelope;
•	 selection of possible interventions on HVAC systems;
•	 assessment of energy performance for different scenarios;
•	 selection of the optimized solution.

The analyzed building is not subject to energy performance law requirements as it falls 
under the category of protected historical or cultural buildings. With the objective to achieve 
high standards for energy-environmental construction, however, the requirements specified by 
the law, wherever possible, have been adopted as reference.

FIGURE 5. Conventional 
building design process.

FIGURE 6. Integrated building 
design methodology (Butera 
2008).
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To improve the energy performance, a detailed assessment on the building performance 
has been carried out by identifying some scenarios related to different technological solutions 
applicable to the existing structure. The pre-existence of walls, floors, roofs and other struc-
tures imposes constructive and operative constraints.

The original historical structure of the building (Fig. 7) was characterized by mixed stone 
and brick walls of different thicknesses and wooden floors and a wooden beam roof with tile 
like finishing. For the building envelope, the analyzed interventions for the reduction of energy 
consumption in the winter and summer periods can be identified by the following points:

•	 valorizing existing thermal mass of building envelope;
•	 increasing thermal resistance of opaque components;
•	 use of high performance glazing (double or triple glazing, low-e coatings, gas cavity);
•	 use of thermal-break and high performance windows.

Various possible interventions were evaluated by defining different scenarios by com-
bining and modifying in various ways the plasters and the insulation material type, thermo-
physical performance and thickness, type of windows with different materials for both the 
opaque and transparent component, and thermo physical-performance. In addition to the 
envelope, the HVAC system was also evaluated to create a correct formulation of the building-
plant system.

After the comparison of the achievable results related to the different scenarios analyzed, 
two main cases have been considered: 

•	 Base Case, which represents a basic rehabilitation project without specific energy 
retrofit measures; 

•	 Improved Case, which represents the optimal energy retrofit solution among the 
different alternatives considered.

The choice of the new envelope solutions was based on the intention to minimize heat 
losses through the envelope and to exploit effectively its thermal mass. The importance of 

FIGURE 7. The building before refurbishment.
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thermal mass is well evident in the literature (Balaras 1996; Roucoult et al. 1999). In fact, dur-
ing the summer period, thermal inertia makes it possible to obtain a shift of the temperature, 
between indoor and outdoor, which can last several hours. In winter, a high thermal inertia 
allows the mass to store solar and internal gains during the day. Thus, the building compo-
nents release stored energy with a delay of several hours. This delay makes it possible to reduce 
the heating period and to preserve a comfortable temperature during the night. With numer-
ous sunny days in spring and in autumn, the thermal inertia make it also possible to reduce 
the heating period. Consequently, the use of high thermal inertia walls in buildings usually 
results in a reduction of energy requirements both for heating and cooling. Furthermore, the 
thermal inertia becomes more important when the inertia is coupled with other energy sav-
ings measures, and with an efficient and rational use of the building (Aste et al. 2009).

In general, the improved case is obtained by introducing an insulating layer on the inside 
or outside of the walls, a layer of plaster with high thermal performance inside of the walls, 
and high-performance transparent elements. But considering the variability of envelope and 
the preservation constraints, different choices have been made on different portions of the 
complex, such as structures located outside of the splint facing north-south and placed further 
north and in the tower. It was not possible to obtain permission from heritage authorities and 
then the only possibility of intervention possible was to add insulation to the inside portion 
of the building. For the rest of the complex, it was possible to intervene from the outside but 
with limitation on the thickness of insulating material to be applied, so as not to affect the 
aesthetic appearance of the facades by including the frames of the opening to the outside to 
align with the new wire wall. In addition, HVAC systems have been designed to exploit better 
the energy performance of the building envelope with high efficiency systems.

5. BUILDING ENVELOPE SPECIFICATIONS
In this section, the building envelope specifications for two cases are described. The first one 
(Base Case) is merely hypothetical, while the second one (Improved Case) corresponds to the 
real building designed and realized on the basis of the findings of the present study. 

5.1 Base Case 
In the basic version of design, the roof and floors were completely renovated, thus eliminating 
the previous deteriorating structure. 

In particular, the final layer of roof coverage was maintained. Since the building is sub-
ject to preservation constraints, the external, originals walls, which are in good condition, are 
maintained. These elements are characterized by a certain variability of thickness. The esti-
mated thermo-physical parameters for vertical walls are shown in Fig. 8. 

In Fig. 9, one can see the non-uniformity of the wall thickness, either due to particular 
construction technologies, but also the development of the complex Corte Montresora over 
time. The different colours indicate the different thickness of the wall, and in particular start-
ing from a darker colour with the thickness of 70 cm to the lighter colour with a minimum 
wall thickness of 40 cm.

The details on the horizontal structures like roof and floors along with the estimated 
thermo-physical parameters are shown in Figs.10 and 11.
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Thickness (cm) 40–70

U (W/m2K) 2.16–1.56

Mf (kg/m2) 976–1666

f (-) 0.21–0.0502

ϕ (h) 10.17–16.89

Yie (W/m2K) 0.46–0.0786

FIGURE 8. Building elements of vertical walls (Base Case).

FIGURE 9. Vertical wall building elements.

Thickness (cm) 57

U (W/m2K) 0.65

Mf (kg/m2) 943.6

f (-) 0.0234

ϕ (h) 20.0

Yie (W/m2K) 0.0153

FIGURE 10. Building elements of horizontal structures: ground floor (Base Case).

Thickness (cm) 20

U (W/m2K) 0.5

Mf (kg/m2) 22.14

f (-) 0.9236

ϕ (h) 2.57

Yie (W/m2K) 0.4691

FIGURE 11. Building elements of horizontal structures: roof (Base Case).
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The glazed elements of the building are characterized by double glass with wooden frame. 
The estimated U-value of these elements are shown in Table 3.

The details on additional components of building envelope are shown in Table 4.

5.2 Improved Case 
At the initial stage of defining energy rehabilitation strategies, verifications had been made 
from the cultural heritage department regarding the possibilities of intervention on the 
building and accordingly the more appropriate solutions were considered. With respect to 
Improved Case, the intervention on the exterior vertical walls of the Units 3, 4, 5, 6, 7, 8, 9 
has been considered by introducing an additional layer of external insulation with the thick-
ness of 8 cm and a traditional plaster finish with a thickness of 1.5 cm. The finish is made with 
2 cm of plaster. This solution (Type A) was adopted for the part of envelope that is not subject 
to special restrictions.

For the walls of Units 1 and 2, being subject to special restrictions, it was not possible 
to intervene on the external part of envelope. It was suggested to apply an internal insulation 
layer of 4 cm, a brick layer of 8 cm and a layer of traditional plaster of 2 cm at both internal 
and external walls (Type C). The existent wall of Unit 10 is covered externally with 8 cm of 
insulation, except for two local places of the tower, where the intervention is assumed by add-
ing 4 cm of plaster insulation on the inside walls of the perimeter (Type B). Figs. 12–14 show 
the typologies and estimated thermo-physical parameters for the vertical walls corresponding 
to the Improved Case.

TABLE 3. Transparent building elements (Base Case).

Building elements Position Layers U-value (W/m2K)

Glass

Whole building

Double glass  
(g-value = 0.747)

3.00

Frame Wood frame 1.80

Window - 2.50

TABLE 4. Other building elements (Base Case).

Building elements Position
Layers (from internal 
to external) U-value (W/m2K)

Intermediate floor Inside the building Tiled floor (1 cm) 
Screed systems (5 cm) 
Layer wood-Planking  
(3 cm)

2.0

Partition 25 cm Partitions inside the 
units

Plaster (1.5 cm) 
Brick (25 cm) 
Plaster (1.5 cm)

1.32

Vertical wall 60 cm Partitions between 
different units

Plaster (1.5 cm) 
Brick (60 cm) 
Plaster (1.5 cm)

1.56
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Thickness of 
wall (cm)

40–70

U (W/m2K) 0.40–0.38

Mf (kg/m2) 978.6–1668.6

f (-) 0.0657–0.0121

ϕ (h) 13.27–20.01

Yie (W/m2K) 0.0267–0.0046

FIGURE 12. Building elements of vertical wall: Type A (Improved Case).

FIGURE 13. Building elements of vertical wall: Type B (Improved Case).

Thickness of 
wall (cm)

50

U (W/m2K) 0.7

Mf (kg/m2) 1214

f (-) 0.0659

ϕ (h) 15.10

Yie (W/m2K) 0.046

FIGURE 14. Building elements of vertical wall: Type C (Improved Case).

Thickness of 
wall (cm)

50–70

U (W/m2K) 0.54–0.535

Mf (kg/m2) 1245–1706

f (-) 0.0514–0.017

ϕ (h) 16.62–21.11

Yie (W/m2K) 0.0294–0.0091
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The details on the horizontal structures like roof and floors along with the estimated 
thermo-physical parameters are shown in Figure 15 and 16.

The glazed elements of the building are characterized by double glass with wooden frame. 
The estimated U-value of these elements are shown in Table 5.

The details on additional components of building envelope are shown in Table 6.
For solar control, use of the external louver shutters equipped with adjustable slots have 

been installed to control the solar radiation entering as well as the illumination level inside.

6. HVAC SYSTEM SPECIFICATIONS
The energy performance analysis considers two different HVAC system typologies to evaluate 
primary energy consumption corresponding to a Base Case and Improved Case. For the Base 
Case, the hypothesis on heating system makes provision only for a conventional system (gas 
boiler) with radiators because it is not suitable to install a high performance HVAC system 
in a building characterized by a low envelope performance. According to the same criteria, 
multi-split air conditioners are considered for cooling. For the Improved Case, the new inter-
vention assumes the use of a HVAC system to serve the complex with two ground source 
water-water multi-stage heat pumps integrated with a radiant floor panel system providing 
heating in winter as well as cooling during summer period. A dehumidification system for 
humidity control in the summer period is also present. A general scheme of the HVAC system 
for Base Case and Improved Case is shown in Fig. 17.

The HVAC system characteristics for both cases are shown in Table 7.

FIGURE 15. Building elements of horizontal structures: ground floor (Improved Case).

Thickness (cm) 63

U (W/m2K) 0.391

Mf (kg/m2) 976.8

f (-) 0.0136

ϕ (h) 21.63

Yie (W/m2K) 0.0053

FIGURE 16. Building elements of horizontal structures: roof (Improved Case).

Thickness (cm) 24

U (W/m2K) 0.33

Mf (kg/m2) 27.9

f (-) 0.7814

ϕ (h) 4.69

Yie (W/m2K) 0.2586
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TABLE 5. Transparent building elements (Improved Case).

Building elements Position Layers U-value (W/m2K)

Glass

Whole building

Selective double glass 
(g-value =0.594)

1.10

Frame Wood frame 1.80

Window - 1.50

TABLE 6. Other building elements (Improved Case).

Building elements Position
Layers  
(from internal to external) U-value (W/m2K)

Intermediate floor Whole building Tiled floor (1 cm)
Under floor heating (10 cm)
Screed systems (5 cm)
Wood layer (3 cm)

0.47

Partition 25 cm Partitions inside the 
units

Plaster (1.5 cm)
Brick (25 cm)
Plaster (1.5 cm)

1.32

Vertical wall 60cm Partitions between 
different units

Plaster (1.5 cm)
Brick (60 cm)
Plaster (1.5 cm)

1.56

FIGURE 17. Scheme of the 
HVAC system for Base Case  
(on the left) and Improved  
Case (on the right).

TABLE 7. HVAC system specifications.

Case HVAC system Supply terminal
Nominal  

efficiency/COP/EER

Base Case Heating 
Cooling

Gas boiler 
Multi-split Room A/C

Radiators 0.8 
2.6

Improved Case Heating 
Cooling

Ground source heat pump Radiant floor 3.2 
4.0
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7. ENERGY PERFORMANCE EVALUATION 
A comparative analysis has been carried out regarding the energy performance of the Base 
Case and Improved Case. To verify the assumptions made and to guide and support sub-
sequent design choices for improvements in building energy performance, dynamic energy 
simulations have been carried out through EnergyPlus program (DOE 2008; Crawley et al. 
2004; Crawley et al. 2001). The climatic hourly data used for simulation corresponds to a 
typical meteorological year (TMY) for the location of reference (Verona).

The input data used for the analysis consist in the different building envelope character-
istics and HVAC specifications corresponding to the Base Case and Improved Case. The anal-
ysis assumes common standard parameters adopted according to the functional destination of 
the building (UNI 10399 1995) and are reported in Table 8. The HVAC systems during mid 
seasons (15 April – 30 May and 1 September – 14 October) are not in function. 

For the Improved Case, the provisions for solar control and the night ventilation have 
been considered during the summer period. To simulate the solar control, it has been assumed 
that if the global solar radiation incident on the windows exceeds 300 W/m2, the shading 
device is active. For night ventilation, the air-change rate during night time is assumed equal 
to 3 V/h (Santamouris et al. 2000). The above hypotheses considered for simulating the solar 
control and night ventilation are reasonable and are expected to calculate the values of energy 
savings quite well. 

7.1 Energy demand
The calculated annual building energy demand for heating and cooling corresponding to the 
Base Case and Improved Case are shown in Fig. 18. The cooling demands includes the sen-
sible as well as the latent energy demand.

For Base Case, the estimated annual heating demand is about 132 kWh/m2 (42 kBtu/h ft2),  
however, the calculated demand for Improved Case is amount to 45 kWh/m2 (14 kBtu/h ft2) year 
which is about 66% lower than the Base Case. The annual energy demand for cooling for Base 
Case and Improved Case is estimated as 19 kWh/m2 (6 kBtu/h ft2) and 10 kWh/m2 (3 kBtu/h ft2)  
respectively. For Improved Case a reduction in cooling energy demand of about 48% is obtained.

The results of the simulations for monthly energy demands corresponding to winter and 
summer periods have been shown in Fig. 19. As said before, the calculations for summer 
energy demand is based on the sensible and latent energy loads.

TABLE 8. Description of simulation parameters.

Base Case Improved Case

Internal gain (people, artificial 
illumination, equipments)

5 W/m2 5 W/m2 

Ventilation 0.5 V/h Winter-0.5 V/h  
Summer-0.5 V/h (7:00 a.m. to 10:00 p.m.)  
Summer-3.0 V/h (10:00 p.m. to 7:00 a.m.)

Solar control No Winter-No 
Summer- Yes

Heating period  
Set point throughout the day

October 15 – April 14 
20°C and 50% RH

October 15 – April 14 
20°C and 50% RH

Cooling period  
Set point throughout the day

June 1 – August 31 
26°C and 50% RH

June 1 – August 31 
26°C and 50% RH
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The thermal peak power for heating and cooling corresponding to two cases is shown in 
Fig. 20. It can be observed that for a better energy performance envelope (Improved Case), 
the required thermal peak power is much reduced in comparison to Base Case. This, in turns, 
directly affects the sizing of the HVAC systems. The thermal peak power for heating is estimated 
as 108 kW (66 W/m2) and 54 kW (33 W/m2) for Base Case and Improved Case respectively 
(–50%). Moreover, for cooling the thermal peak power corresponding to Base Case is esti-
mated as 58 kW (35 W/m2) and is reduced to 41 kW (25 W/m2) for Improved Case (–30%).

7.2 Primary Energy consumption
The annual primary energy consumption for both the cases are shown in Fig. 21. The energy 
consumption for cooling also includes the energy consumed for dehumidification.

FIGURE 18. Annual heating 
and cooling energy demand for 
Base Case and Improved Case.

FIGURE 19. Monthly heating 
and cooling energy demand.

FIGURE 20. Estimated thermal 
peak power for heating and 
cooling.
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It is clear from the results that the combination of better envelope and high efficiency 
HVAC systems (Improved Case) leads to low annual primary energy consumption of  
40 kWh/m2 (13 kBtu/h ft2), which corresponds to 32 kWh/m2 (10 kBtu/h ft2) for heat-
ing and 8 kWh/m2 (2.5 kBtu/h ft2) year for cooling. The estimated annual primary energy 
consumption (heating and cooling) for the Base Case are 163 kWh/m2 (52 kBtu/h ft2) and  
13 kWh/m2 year (4 kBtu/h ft2) respectively. This results in an overall decrease of 75% in the 
primary energy consumption in favor of the Improved Case. It has to be noted that the conver-
sion factor between electricity and primary energy is equal to 2.17 kWh/kWhe (Delibera EEN 
3 2008), which corresponds to the typical fuel mix system for electricity production in Italy. 

The estimated seasonal COP of GSHP system for heating and cooling are 4.2 and 5.2, 
respectively. 

8. ECONOMIC PERFORMANCE EVALUATION 
The economic performance evaluation has been carried out based on the methodology devel-
oped by the authors (Aste et.al. 2010) in order to demonstrate the economic convenience of 
an energy efficient design. The analysis considers the cost of intervention, sub-divided into the 
main categories of interest relevant to present study: opaque envelope insulation, windows, 
HVAC systems and general item named ‘other works’, which includes all other architectural 
works not affecting the energy performance (finishing, painting, appliances etc.). The adopted 
cost parameters are in reference to the Italian listing price for building materials (Prezziario 
2007) and for HVAC systems (Prezziario 2008), and also verified with similar real cases. 

An estimation of the total investment costs was made for both the cases, Base and 
Improved, as shown in Table 9. The total cost for Base Case and Improved Case is estimated 
about € 5,400,000 and € 5,500,000 respectively. The extra cost for energy efficient building 
(Improved Case) is about 50 €/m2 which is about 2% higher than the Base Case.

FIGURE 21. Estimated annual 
primary energy consumption.

TABLE 9. Total building costs.

Base Case (€) Improved Case (€)

Envelope Insulation 7,300 80,600

Windows 47,500 66,500

HVAC Systems 111,800 105,000

Other works 5,233,400 5,247,900
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All assumptions made regarding the costs have been in facts confirmed afterwards by the 
actual realization of the Improved Case solution, which was suggested just by this evaluation. 

The other cost parameters considered for the economical evaluations are as follow:

•	 refurbishment/maintenance cost through time for building envelope is considered 
same for both the cases and therefore not taken in account in the evaluation;

•	 substitution cost: it has been assumed that the generator of HVAC system (condensing 
boiler and multi-split A/C for Base Case and heat pump for Improved Case) are 
substituted during the life span of building, and the useful life of these components are 
taken from the European standard (prEN 15459 2006). The values of useful life and 
substitution costs are summarized in Table 10;

•	 cost of energy: the value attributed to the prevailing electricity and gas prices. The 
value estimated for electricity is 0.225 €/kWh and for gas 0.07 €/kWh (AEEG 2008). 

From the literature (Mateus and Oliveira 2009; EC 2008) an estimate has been made 
regarding the increment in future energy prices and this value is considered 2% per year. 

The maintenance costs for HVAC systems are considered the same for all the cases and 
therefore not taken into account in the evaluation. This hypothesis is highly conservative for 
the heat pump (HP), because it can be easily proven that HP yearly maintenance is cheaper 
than the one required for the gas boiler and multi-split A/C systems, according to the Italian 
law and standards.

The economic evaluation was carried out with the estimation of total costs correspond-
ing to Base Case and Improved Case (total initial investment cost and operating costs), con-
sidering a period of 50 years of building operation. The total cost, as an economic indicator 
related to these cases has been evaluated through the net present value (NPV) method. The 
annual discount rate considered for the analysis is 4%. 

The NPV (Net Present Value) of the total cost (total initial investment cost and operat-
ing costs) for both cases during the life span of the building are shown in Fig. 22. It can be 
seen that higher initial investment for an energy efficient building becomes profitable during 
the life span of the building. The building with the energy retrofit (Improved Case) becomes 
profitable after 14 years with respect to one without energy retrofit (Base Case).

9. CONCLUSIONS
The present work discusses the strategies adopted for energy rehabilitation of an existing his-
torical building and the optimization of energy consumption. In particular, it has been shown 
that adequate interventions focused on the building envelope and HVAC systems reduces 
the energy consumption in significant ways and also have positive effects on operating costs. 
In detail, it is highlighted how the difference in cost between a basic project and an effective 
energy retrofit could be very small (in this case only 2% higher). Faced with limited extra cost, 

TABLE 10. Useful life and substitution costs of HVAC systems.

HVAC components Useful life span (Yrs) Substitution cost (€)

Gas boiler 20 3,000

Multi-spilt A/C 15 108,800

Heat Pump 20 17,000
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however, it is possible to have significant energy benefits. This results in a significant reduc-
tion of energy requirements: in the presented case study the primary energy consumption is 
reduced by 75%. Also the sizing of the HVAC systems has an important role, with thermal 
powers reduced by 30% (cooling) and 50% (heating) for the energy efficient building.

Furthermore, it has been shown through economic analysis that the extra cost for energy 
retrofit measures paid back quickly during the life span of the building: the building with an 
energy retrofit becomes profitable after 14 years with respect to the basic one.

Based on the results of techno-economical analysis presented in this paper, the real build-
ing is constructed corresponding to Improved Case solution.

The theme of restoration of historical buildings has not yet fully addressed the issue of 
energy efficiency in context of built heritage. It might be helpful to address the energy issues 
by adjusting the current performance limits for the new building, and addressing the concept 
of performance improvement of existing buildings, if possible, in view of the synergies aris-
ing between past and present. Therefore, this paper presents an interesting case study, which 
demonstrates how to intervene effectively on historical buildings, and to obtain good results 
in terms of energy savings and cost effectiveness. At present, the project is in the construction 
phase, the monitoring of energy performance is foreseen for comparing the simulated results 
with the actual performance of these buildings.
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