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ABSTRACT
Linear regression analysis is one the most common methods for weather-normalizing 
energy data, where energy versus degree-days is plotted, quantifying the impacts of 
outside temperature on buildings’ energy use. However, this approach solely con-
siders dry-bulb temperature, while other climate variables are ignored. In addition, 
depending on buildings’ internal loads, weather impact can be less influential, making 
the linear regression method not applicable for energy data normalization in inter-
nally driven buildings (such as research laboratory buildings, healthcare facilities, 
etc.). In this study, several existing buildings from different categories, all located on 
the University of Massachusetts Amherst campus and exposed to the same weather 
conditions in a heating-dominated climate, were analyzed. For all cases, regression 
of monthly steam use on heating degree-days and floor-area normalized steam data 
were used, investigating applicability of the former when the latter changes. It was 
found that internal loads can skew steam consumption, depending on the build-
ing functionality, making the effect of degree-days negligible. For laboratory-type 
buildings, besides heating and domestic hot water production, steam is also used for 
scientific experiments. Here, daily occupancy percentage, even during weekends and 
holidays, was higher than that of other buildings, indicating the intensity of scientific 
experiments performed. This significantly impacted steam consumption, resulting in 
higher floor-area-normalized steam usage. In these cases, steam use did not provide 
an outstanding correlation to heating degree-days. Whereas, for cases with other func-
tionality-types and lower floor-area normalized steam, coefficients of determination 
in regressions were high. This study concludes that even for buildings located in the 
same climate, depending on how building functionality and occupancy schedule influ-
ence floor-area normalized steam use, multivariate linear regression can provide more 
accurate analysis, rather than simple linear regression of steam on heating degree-days.
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linear regression, weather normalization, heating degree-days, heating loads, internal 
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1.  INTRODUCTION
The major constituents of energy usage in buildings include heating/cooling systems, hot water 
production, and electricity consumption (Catalina et al. 2013). The overall energy efficiency 
of buildings is influenced by internal and external environmental factors, including occu-
pant intensity, relative humidity, precipitation, and outside temperature (Lee 2008). Outside 
temperature is used for heating and cooling loads calculation. To do so, the average outside 
temperature is subtracted from/by a pre-defined base temperature, resulting in heating/cooling 
degree-days, which are then used for buildings’ energy loads measurement.

To normalize building energy consumption data, one of the most common approaches is 
by removing the effect of weather conditions, using linear regression of energy data on degree-
days. This method of energy data normalization eliminates the impact of deviance in dry-bulb 
temperature on energy consumption. However, one shortcoming of this method is that it 
only considers dry-bulb temperature, ignoring other climatic factors that can influence energy 
performance. These factors include insolation, humidity, and wind speed (Eto 1988). In addi-
tion, in the regression method, dynamic heat transfer throughout the building is ignored. Heat 
transfer can be due to internal heat gains and/or envelope losses/gains. The former is caused 
by occupants, appliances, and lighting equipment. The latter is due to climatic factors, such 
as wind speed (impacting convective heat losses through the envelope), solar irradiance, and 
temperature difference between the inside and outside (Catalina et al. 2013).

Besides simple linear regression, a multivariate linear regression model is another method 
to describe variations of energy data (i.e., dependent variable) according to all significant factors 
(i.e., independent variables), used as inputs in the models (Catalina et al. 2013). Multivariate 
regression models define a mathematical function, representing the best correlation coefficient 
(coefficient of determination or R2) between dependent and independent variables. R2 in the 
scatter plot of dependent vs. independent variable(s) represents percentage of variation in the 
dependent factor caused by the variability of independent variable(s). It also reflects the good-
ness of fit test (“good” R2) in the regression models (Chung et al. 2006).

Multivariate and simple linear egressions share the same assumption of correlations, but 
multivariate regression includes more than one independent variable (Akpinar and Yumusak 
2013; Catalina et al. 2013). The advantage of using a multivariate regression model is to develop 
normalized data, considering all significant factors that affect energy consumption. However, 
requiring too many technical details as inputs is the major shortcoming of this approach, making 
it less practical for the end-users (Chung et al. 2006). In this study, linear regression analysis was 
used, investigating its applicability for various buildings that are exposed to the same external 
environmental conditions, but have different building functionality and occupancy schedules.

2.  LITERATURE REVIEW
Multivariate regression model was used in a study to analyze buildings’ Energy Usage Intensity 
(EUI) (Lee 2008). In the model, independent factors affecting EUI were defined as internal 
and external loads. Internal loads included occupant intensity and building area. External loads 
considered climate conditions, such as dry-bulb temperature, hours of rain, and irradiation 
amount. Multivariate regression model used in the analysis is shown in Equation 1, where 
“a” was the intercept, “b’s” were regression coefficients, and “x’s” were significant independent 
variables (occupant intensity, dry-bulb temperature, and hours of rain).
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	 EUI = a + b1x1 + b2x2 +!+ bkxk
Equation 1.  Energy usage intensity multivariate linear regression model.

The study showed that the higher the occupancy density, the more electricity was used 
for air-conditioning of interior spaces. With higher outside temperature and relative humidity 
(caused by rain), heat rejection of the air-conditioning system worked at lower efficiency. In 
addition, more hours of rain increased outdoor air enthalpy, which had to be removed by air-
conditioning systems to maintain constant indoor air quality (Lee 2008). In another study, it 
was found that energy performance in buildings is significantly influenced, not only by weather 
conditions, but also by occupant density, building-type and building age factors (Piper 1999).

Chung et al. showed that the relation of EUI with significant variables most accurately 
can be presented by multivariate linear regression analysis (Chung et al. 2006). In the study, the 
number of factors in the regression model was a trade-off of having the “best” predictive model 
that included many factors, or a simple interpretable model with only a few significant factors. 
While the former could provide the best correlation, the latter needed less technical information 
about building characteristics. Using EUI multivariate linear regression, an EUI benchmarking 
model for commercial buildings was developed. Here, the argument was that simple floor-area 
normalization of EUI data is not an accurate representation of buildings’ energy performance. In 
this study, other variables, such as building age, floor area, operational hours, occupants’ behav-
ior, set-point temperature, and energy systems were considered as significant factors. The devel-
oped multivariate regression model was determined by backward elimination of insignificant 
variables, whenever their coefficient of determination was not satisfactory (Chung et al. 2006).

Catalina et al. proposed a multivariate regression model with three independent variables 
(heat loss coefficient, south equivalent surface, and temperature difference), predicting heating 
demand in buildings (Catalina et al. 2013). This study suggested that these three variables are 
an optimal solution, since a higher number of inputs could make the model too complicated, 
while smaller number of inputs could cause less accuracy. The model was validated by comparing 
predictions with simulations, as well as on-site data from seventeen real buildings. Compared to 
the simulation, regression model provided a rapid and simple assessment of the energy demand, 
making their application useful for parametric studies and optimization processes (Catalina et 
al. 2013).

Regression analysis can be used both for investigating the impact of significant factors on 
building energy consumption and predicting energy consumption (Zhou and Zhu 2013). In 
this study regression models were developed to evaluate the effect of eight key building envelope 
properties, influencing energy consumption of an office building. Significant factors considered 
were thermal performances of building envelope components (wall, roof, glazing, and window 
frame), glazing optical performances (solar heat gain coefficient and solar reflectivity rate), and 
shading coefficients (internal and external). Results of the regression analysis were then com-
pared to the results of TRNSYS simulations and actual energy consumption data, verifying 
accuracy and feasibility of the regression models. It was concluded that the model can be used to 
estimate energy consumption of office buildings with various building envelope characteristics 
and climate conditions. Similar studies investigated influence of building design factors that 
impact energy use, using multivariate regression models (Carlo and Lamberts 2008; Catalina 
et al. 2008; Lam et al. 2010).
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3.  RESEARCH METHODS AND CASE STUDIES
This study was conducted by analyzing the correlation between monthly steam consumption 
data and monthly heating degree-days (HDD), using several existing buildings as case studies. 
Case studies were selected among buildings from the University of Massachusetts Amherst 
(UMass Amherst) campus, located in a heating-dominated climate. Three main building catego-
ries and four sub-categories were selected, aiming to expand the analysis over a variety of build-
ing types, as a continuation to the previous study (Farid Mohajer and Aksamija 2021). Building 
categories included: (i) Academic (laboratory and library) buildings, (ii) Health Services, and 
(iii) Recreational (gymnasium and swimming pool). Table 1 shows a list of selected case study 
buildings and the corresponding categories.

3.1  Case Study Buildings Overview
Academic building category included two subcategories (i.e., laboratory and library) that are 
shown in Figure 1. Life Science Laboratories (LSL) and Integrated Science Building (ISB) were 
the two investigated laboratory buildings. LSL is an interdisciplinary research facility, built 
in 2013, with an area 174,200 sf. It includes various spaces, such as laboratories, offices, and 
classrooms. ISB, which was built in 2008, has an area of 188,332 sf. The spaces in ISB include 
laboratories, offices, and classrooms, mostly used by the Department of Chemistry at UMass 
Amherst. W.E.B. Du Bois Library was built in 1972 and includes 406,480 sf of library-related 
spaces, such as book storage, computer laboratories, offices, collaborative spaces, etc.

In health services category, University Health Services (UHS) building was selected and 
is shown in Figure 4. UHS was originally built in 1962 (with an area of 35,088 sf ) and extra 
spaces were added to the building in 1973 (total area of 58,506 sf ).

TABLE 1.  Case study buildings and their functions.

Building category Subcategory Building name

Academic Laboratory and office Life Science Laboratories & Integrated Science Building

Library W.E.B. Du Bois Library

Health services N/A University Health Services

Recreational Gymnasium Recreation Center

Swimming pool Totman Physical Education

FIGURE 1.  Academic case studies: Life Science Laboratories (left), Integrated Science Building 
(middle), and Du Bois Library (right).
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Recreational building typology included Recreation Center (RC) and Totman Physical 
Education (TPE) buildings, as shown in Figure 3. Recreation Center is a gymnasium-type build-
ing that includes various recreational and sport spaces, as well as offices. It was built in 2009, 
with an area of 160,191 sf. Totman Physical Education building was built in 1959 and has an 
area of 110,505 sf. It is used mostly by the Department of Music and Dance for performance 
purposes. Also, this building includes one pool and related facilities on its first floor.

3.2  Monthly Energy and Weather Data
For each case study building, monthly steam consumption data was collected from UMass 
Amherst Facilities & Campus Services’ reports. The extracted data was based on Fiscal Years 
(FY), starting from July of the previous year to June of the following year. In this study, FY 2016 
to 2019 was the time span of collected energy data, covering July 2015 through June 2019. 
The reason for this time limit was, firstly, availability of energy data, which determined the 
upper time limit as FY 2019. Secondly, access to calendar years’ weather data through UMass 
Computer Science Weather Station, dictated the lower time span as CY 2016 (UMass Amherst 
Computer Science n.d.). To investigate correlation of monthly steam use with heating degree-
days in each CY, FYs’ energy data was adjusted to CYs, as shown in Figure 4.

To make the data adjustment for FY 2016, steam use from January 2016 to December 
2016 was considered, eliminating data from July 2015 to December 2015. The same was applied 
to FYs 2017, 2018, and 2019. This provided monthly steam use of each case study building for 
three successive calendar years (2016 to 2018).

FIGURE 2.  Health Services case study: University Health Services building.

FIGURE 3.  Recreational case studies: Totman Physical Education (left) and Recreation Center 
(right).
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3.3  Regression of Steam on Heating Degree-Days
Heating degree-day (HDD) is computed as the positive temperature difference between a con-
stant indoor temperature (i.e., base/reference temperature) and the average outdoor tempera-
ture, extended over a twelve-month period. So, HDD is higher than zero only when outdoor 
temperature falls below the base temperature during the heating season, meaning the building 
needs heating system to maintain the indoor comfort conditions (D’Amico et al. 2019).

Monthly HDD is the summation of daily HDDs during each specific month. To calculate 
the monthly HDDs in this study, first, the lowest and the highest daily outside temperatures 
were measured by UMass Computer Science Weather Station. Using this information, daily 
average outside temperatures were calculated. Next, daily HDDs were computed by subtract-
ing the average temperature from the base temperate of 65 °F, which were then summed up to 
calculate the monthly HDDs of the three calendar years (2016 to 2018), as shown in Equation 
2 (ASHRAE 2013; UMass Amherst Computer Science n.d.).

	
HDD = 65−Ti( )+

i=1

N

∑
Equation 2.  Monthly heating degree-day calculation formula.

In the equation, “N” in the number of days in the month and “Ti” is the average outdoor 
daily temperature. The + superscript indicates that only bracketed values that are positive are 
taken into account in the sum. Using monthly HDDs and steam consumption data, regres-
sion analysis was used to investigate the significance of HDD on steam use, using a coefficient 
of determination (R2). The monthly steam consumption data and HDDs that were used in 
the scatter plot of case studies are shown in Table 2 (Scholarworks UMass Amherst n.d.). For 
some of the case studies, there were months that steam usage was not accurately measured, 

FIGURE 4.  Energy data adjustment from fiscal year to calendar year.
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TABLE 2.  Academic, administrative, and recreational buildings’ monthly steam consumption 
and HDDs (Scholarworks UMass Amherst n.d.; UMass Amherst Computer Science n.d.).

CY HDD

Monthly steam use (MBtu)

TPE UHS Du Bois RC LSL ISB

Jan. 2016 1,043.4 1,232 277 2,778 770 3,964 3,698
2017 959.3 1,162 343 2,536 970 4,751 2,993
2018 1,165.2 1,541 360 3,657 1,226 3,256 3,254

Feb. 2016 925.6 1,160 280 2,454 733 3,233 3,321
2017 802.9 990 291 2,246 665 3,945 1,873
2018 789.7 1,080 278 2,533 794 2,312 2,692

Mar. 2016 643 868 220 2,060 603 2,276 2,884
2017 937.7 1,194 351 2,958 824 4,621 2,676
2018 819.4 1,083 315 2,889 741 1,986 3,046

Apr. 2016 458.9 628 210 1,439 474 3,018 2,806
2017 339.6 766 223 2,022 467 2,666 1,880
2018 597.6 866 267 2,337 493 2,355 2,989

May 2016 181.9 298 179 1,506 394 1,519 1,991
2017 222.7 468 218 1,706 388 2,507 4,330
2018 75.5 292 187 1,677 330 1,967 2,913

Jun. 2016 18.1 252 159 751 187 1,215 1,813
2017 34.2 415 185 0 237 185 4,650
2018 23.7 258 173 1,441 242 1,938 2,713

Jul. 2016 0 175 162 1,053 164 1,696 2,141
2017 5.4 203 177 3,754 237 1,313 4,611
2018 0 209 173 1,329 193 222 2,732

Aug. 2016 0 171 162 613 160 1,650 2,409
2017 1.5 193 177 1,209 246 1,245 2,092
2018 0 202 169 1,131 88 1,315 2,718

Sep. 2016 48.2 208 162 8,61 335 1,805 2,269
2017 42.8 213 182 1,294 276 1,343 1,912
2018 72.6 234 174 1,418 462 926 12,901

Oct. 2016 340 638 202 1,599 431 2,585 2,456
2017 185.5 332 194 1,387 340 1,831 2,216
2018 400.7 611 236 2,152 799 957 1,062

Nov. 2016 640 881 270 2,372 503 3,140 2,489
2017 685.8 961 268 2,251 695 2,932 3,033
2018 754.6 1,045 288 0 898 1,058 1,866

Dec. 2016 985.7 1160 343 2460 872 4664 3158
2017 1127 1,421 373 3,475 1,081 3,710 3,536
2018 943.7 1,227 311 3,487 1,088 1,456 2,192
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representing significantly lower quantities compared to the previous and subsequent months. 
These errors were due to metering system’s malfunctioning. Steam data for these months were 
eliminated from the scatter plots, preventing their inappropriate impact on the regressions’ R2.

Correlation coefficients of the linear regressions divided case studies into two categories of 
high and low R2, determining relation between dependent and independent variables. Totman 
Physical Education, University Health Service, Recreation Center, and Du Bois Library were 
the cases with high R2, ranging from 0.98 to 0.83. Correlation coefficient of 0.98 indicated that 
98% of monthly steam use changes in TPE building was due to variations in monthly heating 
degree-days. Scatter plots of the regression with high R2 are shown in Figure 5.

On the other hand, LSL and ISB had the lowest R2 (0.55 and 0.02), as shown in Figure 6. 
In these two cases, weather condition was not a significant factor causing changes in monthly 
steam consumption.

To investigate case study buildings’ characteristics causing the distinction in linear regres-
sion results, a comparative analysis was conducted, capturing the relation of floor-area normal-
ized steam use and linear regression of steam on heating degree-days.

FIGURE 5.  Case study buildings with higher coefficient of determination (R2).
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4.  COMPARATIVE ANALYSIS OF RESULTS
R2-deviation in regression models was investigated, using three-year average of floor-area nor-
malized steam use (kBtu/sf/yr), also introduced as Steam Usage Intensity (SUI). To compare the 
results, SUI of Totman Physical Education building, with the highest R2 of 0.98, was adopted 
as the baseline. The purpose of baseline selection was to investigate, based on SUI-deviations, 
how R2 in the regression analyses was impacted. SUI-deviations from the baseline are shown 
in Table 3.

Comparison of the results segregated case studies with lower SUI from the ones with higher 
SUI. In case studies with lower SUI (i.e., negative deviation from the baseline), R2 was high, 
even close to that of the baseline. These cases included the University Health Services, Du Bois 
Library, and Recreation Center, with R2 of, 0.91, 0.83, and 0.87, respectively.

Life Science Laboratories and Integrated Science Building, on the other hand, had much 
higher SUI (large positive deviation from the baseline), and much lower R2 (0.55 and 0.02). 
For LSL and ISB, scatter plots of steam use on HDDs did not indicate an outstanding cor-
relation between the two, meaning weather condition was not the significant factor. In LSL 

FIGURE 6.  Case study buildings with lower coefficient of determination (R2).

TABLE 3.  Comparison of floor-area normalized steam use for the case study buildings.

Building 
name Area (sf)

3-year average annual 
steam use (MBtu)

Average SUI 
(kBtu/sf/yr) SUI deviation Regression R2

TPE 110,505 8,213 74 0% 0.98

UHS 58,506 2,847 49 -34% 0.91

Du Bois 406,480 22,945 56 -24% 0.83

RC 160,191 6,469 40 -46% 0.87

LSL 174,200 27,188 156 111% 0.55

ISB 150,325 36,105 240 224% 0.02
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and ISB buildings, not only general offices and classrooms are located, but also laboratories are 
used for scientific experiments. Laboratory buildings were the only category using steam for 
experimental and cleaning purposes, which significantly increased internal loads and energy 
demand. As shown in Table 3, steam usage intensity in LSL and ISB had, respectively, 111% 
and 224% deviation from the base SUI.

Generally, steam is used for heating loads and domestic hot water (DHW) in buildings. 
Heating loads are mainly dependent on thermal transmittance of envelope components and 
temperature difference between the inside and outside. However, due to building functionality, 
steam use can be impacted, regardless of the envelope properties and/or weather conditions. 
Impact of laboratory-type building on higher SUI was in line with expectations, as in labora-
tories steam was also used for scientific experiments and cleaning purposes. It is worth noting 
that both LSL and ISB laboratory buildings were the most recently built cases and LSL is a 
LEED-Gold certified building. Due to more stringent and demanding building codes, envelope 
heat losses in these newer buildings are not higher than that of other, older buildings. And, 
higher steam use in LSL and ISB buildings cannot be due to heat losses through the building 
envelope. In addition, building envelope deterioration that occurs with building aging cannot 
be a significant factor impacting higher steam consumption.

One critical factor causing higher SUI in LSL and ISB was the hourly occupancy percent-
age, which inferred higher internal loads and demands. Compared to other buildings, laboratory 
facilities are used more often, even during Winter/Summer breaks, weekends, and holidays. 
Besides, laboratories are more occupied before 7 am (not the case for recreational buildings) and 
after 5 pm (not the case for classrooms/offices), as shown in Figure 7 (Mostafavi et al. 2015).

Du Bois Library has a similar schedule as offices/classrooms, as shown in Figure 8, as its 
occupancy schedule depends on students’ attendance for office/classrooms (Mostafavi et al. 
2015).

Recreational building category has the lowest hourly occupancy percentage, compared to 
the other two building types. As shown in Figure 9, the highest occupancy percentage in this 
category is during Fall/Spring semesters, from 11 a.m. to 9 p.m (Mostafavi et al. 2015).

FIGURE 7.  Hourly occupancy percentage in laboratory buildings.
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To compare occupancy schedule for the case studies, daily occupancy percentage during an 
academic year (Fall/Spring semester, weekend/holiday, and Winter/Summer breaks) were com-
pared. Occupancy percentage of laboratory-type buildings was assigned as the baseline, quan-
tifying deviation of other cases’ occupancy percentage from the baseline, as shown in Table 4.

As shown in Table 4, library building was slightly less occupied, compared to laboratories. 
This small difference, along with the fact that in library, steam is used only for heating and 
DHW, reasonably explained steam consumption in the Du Bois Library (–24% SUI-deviation) 
to be less than that of LSL (111% SUI-deviation) and ISB (224% SUI-deviation). In addition, 
in the Recreational Building category (TPE and RC), steam is used for heating and DHW. The 

FIGURE 8.  Hourly occupancy percentage in offices, classrooms, and library buildings.

FIGURE 9.  Hourly occupancy percentage in recreational buildings.
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amount of DHW used in this type of buildings, especially in shower and pool spaces, should 
be higher than a library, if occupancy density and schedule are considered to be the same. 
However, due to percentage of occupancy to be one third of the baseline, steam was consumed 
less than laboratories, especially during weekend/holiday and Winter/Summer breaks. It is 
worth noting that the TPE building is mostly used by the Department of Music and Dance 
for academic purposes and rehearsal practices, and DHW demand is limited to one pool and 
related facilities, such as showers rooms. Given daily occupancy percentage of one-third, steam 
use in Recreation Center and Totman Physical Education buildings was, unsurprisingly, smaller 
than in the laboratory buildings.

Comparative analysis of the results showed that for all cases, except for laboratory-type 
buildings (LSL and ISB), linear regression of steam use on heating degree-days can be used to 
weather-normalize steam data. However, for LSL and ISB, it is not only the weather condi-
tion that impacts steam consumption. Other significant factors, such as occupancy schedule, 
monthly number of experiments performed, and the amount of steam used for that purpose 
need to be considered. Therefore, multivariate linear regression can better capture the relation 
of steam use with other significant explanatory factors.

5.  CONCLUSION
This study was conducted to investigate the applicability of linear regression of steam on heating 
degree-days (weather-normalization of stream use) for various building functions located in a 
heating-dominated climate, using actual existing case studies. Results showed that, depend-
ing on the buildings’ function, besides weather condition, other factors can have significant 
impact on energy performance. Steam use in some case study buildings indicated a strong rela-
tion with heating degree-days, when exposed to the same weather conditions. In these cases, 
heating degree-days in the linear regressions became the surrogate for all influences, climatic 
or otherwise, on steam consumption. Whereas, low R2 in other linear regressions indicated 
an insignificant correlation between steam use and heating degree-days. It was found that for 
laboratory-type buildings, internal loads and occupancy schedules significantly influenced steam 
consumption, making HDDs less influential. Here, weather normalization of steam use was 
not an accurate approach to factor out the effects of weather conditions. It was concluded that 
multivariate regression analysis, which considers all explanatory factors, can be a more accurate 
analysis method.

TABLE 4.  Daily occupancy percentage of the case study buildings during a whole academic year.

Building Type

Daily occupancy percentage in case study buildings

Fall/spring 
weekday

Weekend 
& holiday

Winter/
summer 
weekday

Daily 
average

Deviation 
form baseline

Recreational 53% 24% 25% 34% –29%

Offices/classrooms/
library

48% 35% 56% 46% –4%

Laboratory 56% 34% 56% 48% 0%
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Future studies will investigate the development of a multivariate linear regression model 
of steam use in laboratory buildings. For that purpose, a laboratory building will be modeled, 
and its energy performance will be analyzed, using parametric changes in simulations. Results 
of the analysis will be used to determine the regression coefficient of the significant factors in 
multivariate regression, aiming to develop a multivariate model.
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