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SENSITIVITY ANALYSIS OF BUILDING 
ENERGY PERFORMANCE BASED ON 

POLYNOMIAL CHAOS EXPANSION

Wei Tian1,2* Chuanqi Zhu,1 Pieter de Wilde,3 Jiaxin Shi,1 Baoquan Yin4

ABSTRACT
Global sensitivity analysis based on polynomial chaos expansion (PCE) shows 
interesting characteristics, including reduced simulation runs for computer models 
and high interpretability of sensitivity results. This paper explores these features of 
the PCE-based sensitivity analysis using an office building as a case study with the 
EnergyPlus simulation program. The results indicate that the predictive performance 
of PCE models is closely correlated with the stability of the sensitivity index, depend-
ing on sample number and expansion degree. Therefore, it is necessary to carefully 
assess model accuracy of PCE models and evaluate convergence of the sensitivity 
index when using PCE-based sensitivity analysis. It is also found that more simula-
tion runs of building energy models are required for a higher expansion degree of 
the PCE model to obtain a reliable sensitivity index. A bootstrap technique with a 
random sample can be used to construct confidence intervals for sensitivity indicators 
in building energy assessment to provide robust sensitivity rankings.

KEYWORDS
sensitivity analysis, building energy, polynomial chaos expansion, model accuracy

INTRODUCTION
Building energy simulation has been widely used to assess energy performance for new or 
existing buildings [1, 2]. A large number of simulation models are often required for energy 
optimization or model calibration to provide robust results [3]. Sensitivity analysis can be used 
to reduce computational cost for these problems by choosing key variables influencing building 
energy performance [4, 5]. Global sensitivity analysis has generally received more attention since 
this global technique can explore the full parameter space of inputs in order to evaluate complex 
nonlinear and interaction relationships among inputs and outputs in buildings, compared to 
local sensitivity analysis methods [4, 6]. Various types of global sensitivity analysis have been 
used in building energy assessment [7, 8]. Menberg et al. [6] compare the characteristics of 
three global sensitivity analysis methods, including the Morris method, linear regression, and 
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variance-based Sobol method, in the context of building energy modelling. Delgarm et al. [9] 
investigate the choice of energy saving measures in the early phase of building design based 
on variance-based sensitivity analysis. Tian et al. [10] apply a sequential sensitivity analysis to 
evaluate the convergence of global sensitivity analysis results based on meta-model methods. 
Mastrucci et al. [11] simplify the housing stock model of Esch-sur-Alzette (Luxembourg) by 
using two types of global sensitivity methods (elementary effects and Sobol). Among these global 
sensitivity analysis methods, meta-modelling sensitivity analysis can reduce the computational 
cost of sensitivity analysis at the price of slightly reducing accuracy of energy estimation [12]. 
Hence, it is important to assess the prediction performance of meta-models in building energy 
analysis when implementing a meta-modelling sensitivity approach. The common meta-model-
ling sensitivity analysis methods are to compute Sobol indices using the Monte Carlo sampling 
methods after obtaining meta-models [13], which means that the meta-models need to be run 
a large number of times. In contrast, the polynomial chaos expansion (PCE) sensitivity analysis 
method [14, 15] has interesting characteristics of easy interpretation and low computational 
cost. This is because the PCE surrogate model can compute Sobol indices analytically from the 
PCE coefficients [16]. However, there are only a few studies that implement this PCE-based 
global sensitivity analysis in the field of building energy assessment [17]. Faggianelli et al. [17] 
apply the polynomial chaos expansion sensitivity analysis to compare the performance of three 
types of sampling methods (random, Latin hyper-cube, and quasi Monte-Carlo) in building 
energy analysis. There are still a number of issues that need to be explored when applying this 
PCE-based sensitivity analysis in building energy analysis. Key issues to explain are the connec-
tion between model accuracy and stability of the sensitivity index of PCE models, and how to 
construct confidence intervals of the PCE sensitivity index to provide more informed results 
in building energy assessment.

Therefore, this paper explores the characteristics of PCE-based sensitivity analysis in build-
ing energy assessment. An office building is used as a case study to demonstrate the application 
of the PCE-based sensitivity method. The main contributions of this paper are two-fold. One is 
to make connections between model accuracy and stability of sensitivity index in order to better 
explain the results in determining key variables influencing building energy performance. The 
other is to construct confidence intervals of the PCE sensitivity index in order to make informed 
decisions in building energy design or retrofitting. Moreover, the importance of assessing the 
stability of the sensitivity index has been discussed in this research, which is often ignored in 
the field of building simulation.

METHODS

Building energy models
Figure 1 shows a U-shaped office building used in this study, located in Tianjin, China. This 
is a three-storey building with a total floor area of 4850 m2 and a window-wall ratio of 40%. 
The parameters of building envelope and HVAC system for this building are consistent with 
the energy efficiency standard of commercial buildings in China released in 2015 [18]. The 
hourly schedules for occupants, lighting, and equipment are also derived from this standard 
code [18]. A VAV (variable air volume) system with a gas boiler and a centrifugal chiller is used 
to provide heating, cooling, and ventilation to maintain thermal comfort in this building. Note 
that the office building used in this paper is a notional building in accordance with the latest 
China building code for the purpose of evaluating characteristics of the PCE sensitivity method. 
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Hence, there is no need for calibrating the building energy model in this case study since there 
are no actual measurements of energy use for this office building.

The parameters and associated values used for sensitivity analysis are listed in Table 1 [18, 
19]. It is assumed that these parameters follow uniform distributions since they are design 
parameters with equal probabilities within the intervals specified in Table 1. Random sampling 
and Latin hyper-cube sampling (LHS) methods [20] are used to obtain the combinations of 
these parameters to compare the suitability of PCE models in building energy assessment. 
Different sampling size numbers from 30 to 500 are applied to evaluate the stability of PCE 
results. The ‘R lhs’ package is used to generate Latin hypercube samples [21]. The EnergyPlus 
V8.8 program, which has been intensively validated and widely applied in building energy 
simulation, is used to compute the energy use of this office building [22]. The two main per-
formance measures are annual heating and cooling energy normalized by total floor area (unit: 
kWh/m2). The R program [23] is used to automatically edit and run EnergyPlus models since 
thousands of simulation runs are required in this study.

Polynomial chaos expansion
It is assumed that there is a computational model y = G(x), where x denotes independent 
variables with the dimension of d, and y denotes dependent variables. The x is described by a 
probability density function fx(x). The dependent variable y in most engineering problems can 
be expressed using spectral representation with a new set of random variables z and the corre-
sponding coefficients yj where j is from 0 to ∞ [24]. The new set of z is multivariate orthonormal 

FIGURE 1.  The office building used in this study.

TABLE 1.  Parameters used for sensitivity analysis.

Factor Short names Unit Range

Wall U-value WU W/m2K 0.2–0.4

Roof U-value RU W/m2K 0.1–0.3

Window U-value GU W/m2K 1–2.5

Solar heat gain coefficient SH — 0.2–0.5

Lighting power density LD W/m2 8–10

Equipment peak value ED W/m2 14–16

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access



176	 Volume 15, Number 4

polynomial in the input variables x based on the polynomial chaos expansions. If the fx(x) 
density functions are standard functions, the associated families of orthogonal polynomials are 
readily available [16]. For uniform distributions, the resulting family is that of the Legendre 
polynomials. For standard normal distributions, the resulting family is that of the Hermite 
polynomials. More families of orthogonal polynomials associated to standard distributions are 
available [14]. For nonstandard distributions, it is necessary to transform these distributions to 
standard distributions. For instance, the non-standard uniform or normal distributions can be 
changed to standard forms using linear functions [14].

The expansion degree (j in yj) is usually truncated for computational purposes to a specific 
value using truncation schemes, typical 3–5 [14]. The number of unknown coefficients is (d + 
p)! / (d! p!) in the PCE model [16]. PC coefficients can be computed using two non-intrusive 
methods: projection and regression. The projection method is based on the orthogonality of the 
basis function to minimize the distance between the function and its surrogate. The regression 
method is similar to the response surface methods to create approximate relationships among 
inputs and outputs using experimental design approaches. Here the regression method is used 
based on [24] since it is more suitable for various types of DOE (design of experiments) methods 
and more stable for noisy training data, especially in the case of low-dimension inputs. The 
PCE and Sobol decompositions are both sums of orthogonal function. As a result, the Sobol 
sensitivity indices can be analytically derived from the PCE coefficients [15]. The first coefficient 
(i.e. constant term) of PCE is the mean value of model output, and the variance of output is 
the sum of squares of the remaining coefficients. Two types of sensitivity indicators are usually 
used in Sobol sensitivity analysis: ‘main effects’ and ‘total effects’. The main effect of a specific 
variable denotes the separate influence of this variable on outputs without considering the 
effects of other variables. In contrast, total effects take into account the influences of both this 
variable and interactions with other variables under consideration. Main and total effects can be 
computed using the weighted sum of squares for the selected PC coefficients in PCE models. 
Higher-degree interaction effects can be also easily obtained using the same method and the 
interaction degrees are dependent on the expansion degree used in the truncation process of 
PCE models. The R polychaosbasics package is used to obtain the PCE-based sensitivity index 
[25].

RMSEP (root mean square error in prediction) is used to assess the performance of regres-
sion for expansion coefficients. The RMSEP is calculated by the square root of the PRESS (pre-
dicted residual error sum of squares) divided by the number of data [25] in which the PRESS is 
computed based on the cross validation method in regression analysis. Hence, the RMSEP can 
provide reliable out-of-sample performance of regression models. A lower RMSEP value means 
a more accurate regression model. In the specific case in this paper, RMSEP (unit: kWh/m2) 
can be interpreted as average deviation between EnergyPlus simulation results and predictions 
of PCE regression models, although this value remains sensitive to outliers.

RESULTS AND DISCUSSION

Regression performance of PCE models
The expansion coefficients are obtained from the least square method. Therefore, it is necessary 
to assess the regression performance for polynomial chaos expansion models before imple-
menting the PCE models for sensitivity analysis. Table 2 shows the regression performance for 
building energy estimation at the expansion degrees of 2 and 3 using the Latin hyper-cube and 
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random sampling methods for annual heating and cooling energy, respectively. Note that the 
number of coefficients in the PCE model is 28 at the expansion degree of 2 and the number 
of coefficients in the PCE model is 84. The sampling size of energy models cannot be less than 
these numbers for the corresponding degree number to obtain regression equations using the 
ordinary least square method. This is the reason for different initial sample numbers in Table 2.

Table 2 indicates that the RMSEP for heating energy use would decrease with an increase 
in sample size using Latin hyper-cube sampling at the expansion of degree 2. Hence, a sufficient 
sample size is required to obtain reliable PCE models. The improvement of model accuracy is 
very limited for large sample size, for instance, from 400 to 500. The same trend can be also 
observed for cooling energy, where again more simulation runs can be helpful to obtain accurate 
PCE models. It is also found that the predictive capability is slightly worse for cooling energy 
than that for heating energy in terms of RMSEP. Therefore, there are more complex relationships 
among inputs and outputs for cooling energy in comparison with heating energy in this case 
study. Table 2 also shows the regression performance as a function of sample size for heating 
and cooling energy at the expansion of degree 2 using Monte-Carlo random sampling. For both 
heating and cooling energy, the RMSEP values would be reduced with an increase of sample 
size, which is the same as the conclusion obtained from Latin hyper-cube sampling method.

It is observed that the sampling method (LHS or random) has a strong impact on the 
model accuracy of PCE in this case study. For a sample size of 30, the low sample size does 
not yield sufficient data to produce reliable PCE models for both LHS and random sampling 
methods. As a result, the RMSEP values are higher for these two sampling methods. When 
the sample size is above 30 for the expansion degree 2, the accuracies from LHS are higher 
than those from random heating and cooling energy use. However, this is not the case for the 
expansion degree 3. This indicates that the influence on sampling methods varies a lot, depend-
ing on performance measure, expansion degree, and sample number. By comparing the results 
from expansion degrees 2 and 3 in Table 1, the RMSEP values for heating energy are smaller 

TABLE 2.  Predictive performance (RMSEP) of PCE models as a function of sample number, 
sample method, and expansion degree for annual heating and cooling energy use.

Sample 
number

Heating Cooling

Expansion degree 2 Expansion degree 3 Expansion degree 2 Expansion degree 3

LHS Random LHS Random LHS Random LHS Random

30 5.646 1.508 — — 38.567 2.837 — —

50 0.385 0.512 — — 0.772 0.914 — —

75 0.396 0.440 — — 0.723 0.832 — —

100 0.340 0.371 1.251 0.866 0.604 0.696 2.180 1.783

200 0.332 0.346 0.326 0.312 0.623 0.634 0.562 0.541

300 0.326 0.328 0.283 0.260 0.587 0.599 0.496 0.461

400 0.293 0.319 0.246 0.240 0.542 0.585 0.436 0.425

500 0.293 0.321 0.223 0.233 0.537 0.597 0.404 0.417
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at the degree of 3 than those at the degree of 2 in the case of same sample number except for 
the sample number of 100. Hence, the increase of expansion degree can increase PCE model 
accuracy as long as sufficient sample size is attained to obtain all the coefficients required for 
PCE models. For the cooling energy, the same conclusion can be also reached.

Figure 2 compares the EnergyPlus simulation results and PCE model outputs at the 
expansion degree 3 and sample size 300 for annual heating energy use from LHS and random 
sampling, respectively. The deviations between energy simulation and PCE regression models 
are small in this case, which is consistent with the results shown in Table 2. As also can be seen 
from Figure 2, the differences between two sampling methods are small. Hence, the PCE model 
accuracy is influenced by several factors, including sampling approach, sample number, and 
expansion degree.

Sensitivity analysis for heating energy use
Figure 3 shows the sensitivity results of heating energy for the first three important factors at 
the expansion degree of 2 in this office building. The ranking results tend to become stable after 
the sample size of 100 using Latin hyper-cube sampling. In contrast, a larger sample is needed 
to obtain reliable results with random sampling and here the sensitivity analysis results remain 
almost constant after the sample size of 200. This difference can be explained by the fact that 
the model accuracy RMSEP using Latin hyper-cube sampling is around 0.340 at the sample 
size 100 as shown in Table 2 and the sample number with random sampling is around 200 to 
obtain the same degree of accuracy as listed in Table 3. More accurate PCE models would lead 
to more reliable results from sensitivity analysis. The most important factor among six variables 
listed in Table 1 is the U-value of external windows (GU) in this case study building. The next 
two important variables are solar heat gain coefficient of windows (SH) and roof U-value (RU).

Figure 4 shows the results of sensitivity analysis at the expansion degree of 3 for heating 
energy. The third-degree PCE models lead to more stable results compared to the second-degree 
PCE models. This is because more simulation runs are required for higher degree PCE models. 

FIGURE 2.  Comparison of EnergyPlus simulation and PCE model outputs at the expansion 
degree 3 and sample number 300 for annual heating energy use.

�
(a) Latin hyper-cube sampling	 (b) Random sampling
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After the sample size of 200, the results become stable for both Latin hyper-cube and random 
sampling methods as shown in Figure 4. The results from Figure 4 are consistent with those 
from Figure 3. This is due to the fact that the second-order or third-order interaction terms 
are not significant in this case study, which can be used to explain small differences of RMSEP 
between the expansion degree of 2 and 3 as discussed in the last section.

Sensitivity analysis for cooling energy use
Figure 5 and Figure 6 illustrate the total effects of the first three important factors influenc-
ing cooling energy at the expansion degree of 2 and 3, respectively. More simulation runs are 
required for high expansion degree of PCE models. The sensitivity results become stable after 
a sample size of 200 for both the degree of 2 and 3 of PCE models. The random and Latin 
hyper-cube sampling methods lead to similar results in this office building. The solar heat 

FIGURE 3.  Total effects of the first three important factors for heating energy using the PC 
expansion degree of 2.

�

(a) Latin hyper-cube sampling	 (b) Random sampling

FIGURE 4.  Total effects of the first three important factors for heating energy using the PC 
expansion degree of 3 with Latin hyper-cube sampling.

�

(a) Latin hyper-cube sampling	 (b) Random sampling

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access



180	 Volume 15, Number 4

gain coefficient (SH) of external windows is identified as the most dominant variable influ-
encing cooling energy. The next two variables are equipment and lighting heat gains in this 
office building.

To further validate the results from PCE sensitivity method, Sobol sensitivity analysis is 
conducted for the same data. It is found that the relative deviation of total effects for dominant 
variable (solar heat gain coefficient of windows) between the Sobol method and PCE method 
at a sample size of 200 is less than 1% although the deviation of total effect at the expansion 
degree of 3 is slightly less than that at the expansion degree of 2. Therefore, the PCE sensitivity 
analysis can provide reliable results as long as the sensitivity indicators become stable.

Confidence intervals of total effects using the bootstrap approach
Confidence intervals of sensitivity indicators should be provided to to assess the reliablity of 
sensitivity analysis in building energy assessment [3]. The bootstrap technique may be used 
to obtain the percentile bootstrap confidence by resampling the data with replacement to 

FIGURE 5.  Total effects of the first three important factors for cooling energy using the PC 
expansion degree of 2 with Latin hyper-cube sampling.

�

(a) Latin hyper-cube sampling	 (b) Random sampling

FIGURE 6.  Total effects of the first three important factors for cooling energy using the PC 
expansion degree of 3 with Latin hyper-cube sampling.

�

(a) Latin hyper-cube sampling	 (b) Random sampling
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recalculate PCE sensitivity indicators [26]. The bootstrapping sampling size is chosen as 200 in 
this study since preliminary simulation indicates that the bootstrapping results become stable 
after reaching approximately 200. This implies that 200 PCE models need to be created for both 
a given original sampling number and a given expansion degree. Different types of confidence 
intervals from boostrap resampling are available, including standard interval, percentile boot-
strap, and bias corrected interval. The precentile confidence intervals are chosen in this study 
since this method does not need any hypothesis on variable distributions. For a more detailed 
description on the approach used here, please refer to [26]. Note that this bootstrap method 
is only used for the data from random sampling, not for Latin hypercube sampling, since the 
stratification for new boostrapping data may not be preserved by directly bootstrapping the 
orginal LHS data [27]. A replicated bootstrap may be implemented in this case, however, much 
more computatonal cost is needed for this replicated sampling approach [28].

Figure 7a shows the 95% confidence intervals and box plot for total effects of window 
U-values affecting annual heating energy at the degree of 2 of PCE model. The confidence 
interval would be reduced significantly when the sample number changes from 30 to 100. 
After that, the 95% confidence interval would decrease slowly, around 0.03 at the sample 
number of 500. This indicates that the results from PCE sensitivity method are reliable after 
the sample size of 100. The box plot for window U-value is obtained directly from 200 samples 
of bootstrap resampling technique. There is a clear trend that variations of total effect would 
become stable after an original sample number 100. Note that the original sample size 100 is 
the number of simulation runs to create EnergyPlus models, where the 200 bootstrap number 
is the resampling number to create PCE models based on energy data from a fixed orignal 
sampling number of 100 with replacement. Figure 7b shows the 95% confidence interval and 
box plot from total effects of solar heat gain coefficients of windows for annual cooling energy 
at the expansion degree of 2. The trends are similar to the results obtained from Figure 7a. The 
total effects become stable after the sample size of 100 and the corresponding 95% confidence 
interval is from 0.894 to 0.914.

Further study is required to explore the combination of replicated Latin hypercube sam-
pling and PCE-based sensitivity analysis to obtain confidence intervals of sensitivity index in 
building energy analysis. The advantages and disadvantages of random and Latin hypercube 

FIGURE 7.  Confidence intervals (95%) and box plot for total effects of window U-value and solar 
heat gain coefficients influencing heating energy with random sampling.

�

(a) Window U-value	 (b) Solar heat gain coefficients
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sampling methods in PCE-based sensitivity analysis should be further explored for different 
types of buildings with various numbers of input variables to evaluate the consistence of the 
results obtained from this case study. It is also an interesting topic to explore characteristics of 
sensitivity analysis using various types of meta-models in order to make guidance on choosing 
suitable meta-models for sensitivity analysis in building energy assessment.

CONCLUSIONS
This paper implements global sensitivity analysis based on polynomial chaos expansion (PCE) 
in building energy assessment. The results suggest that model accuracy and the stability of sen-
sitivity indicators are closely connected, depending on sample size and expansion degree. It is 
important to assess the accuracy of PCE models before implementing them in global sensitivity 
analysis. Model accuracy indicators can be useful to guide the stability of the sensitivity index. 
Conversely, the results from sensitivity analysis can be helpful to interpret PCE model accuracy 
for different sample numbers and various expansion degrees. More simulation runs for building 
energy models are required to obtain a reliable sensitivity index for higher expansion degrees in 
PCE models. Moreover, the bootstrap technique can be combined with random sampling to 
provide confidence intervals for a PCE-based sensitivity index in building energy assessment. 
The Latin hypercube sampling can slightly improve model accuracy and stability of the sensitiv-
ity index when compared to random sampling.
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