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EFFECT OF RECYCLED CONCRETE AGGREGATE 
QUALITY ON PROPERTIES OF CONCRETE
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ABSTRACT
The possibility of the use of recycled aggregates from the construction industry in 
green concrete production is of increasing importance to reduce the negative envi-
ronmental impact associated with construction and demolition wastes. The objective 
of this study is to investigate the effect of recycled concrete aggregate (RCA) quality 
on the properties of hardened concrete properties such as compressive strength, 
splitting tensile strength, density, water absorption capacity and porosity accessible 
to water. The RCA used in this study was obtained from the crushing of waste con-
crete with two different compressive strengths (LRCA obtained from the crushing 
of waste concrete having compressive strengths below 30 MPa and HRCA obtained 
from the crushing of waste concrete having compressive strengths above 30 MPa). 
The natural coarse limestone aggregate was 100% replaced with coarse LRCA and 
HRCA. As a result of the study, the use of 100% HRCA and %100 LRCA instead 
of limestone coarse aggregate in the concrete adversely affected its mechanical and 
physical properties. In addition, HRCA showed better performance in terms of com-
pressive strength, tensile strength, water absorption and porosity compared to the use 
of LRCA. Furthermore, the percentage of adhered mortar on the surface of LRCA 
and HRCA was analyzed using a computerized micro tomography device, and it was 
found that the percentages of attached mortar and aggregates are 61% and 35.5% 
for LRCA, whilst the attached mortar and aggregate contents for HRCA are 45.9% 
and 53.7%, respectively.
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1.  INTRODUCTION
World population growth and the accelerating urbanization in the major cities of developing 
countries is causing a depletion of natural resources and the generation of excess waste materials. 
With the acceleration of an Urban Renewal Program in large cities of Turkey, finding landfills 
for construction wastes has become a challenge. Due to these large scale demolitions, large 
amounts of wastes are produced causing serious environmental pollution, including a disposal 
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problem. In addition, it has been reported that approximately 900 million tons of construction 
and demolitions wastes are produced annually in the European Union and represents around 
25–30% of total waste generated (Bravo et al., 2015; Sadati et al., 2016; Yap et al., 2018). 
Furthermore, more than 3 billion tons of construction and demolition wastes were generated 
in 2016 by 40 countries worldwide (Akhtar and Sarmah, 2018; Hu et al., 2019). Therefore, 
there is an impetus for special measures to deal with the wastes generated by the construction 
industry. The possibility, then, of using recycled aggregates from the construction industry in 
concrete production is of increasing importance to reduce the negative environmental impact 
associated with construction waste.

Due to the ingredients of a concrete mixture (cement, coarse and fine aggregate, water 
and admixtures) aggregate taking about 70% of concrete’s volume, it can be seen that the con-
crete industry consumes a huge amount of natural aggregate and creates severe environmental 
problems. For this reason, the use of recycled aggregates in concrete production may reduce 
the depletion and the scarcity of natural aggregate reserves, while also reducing the disposal 
problem of concrete wastes.

Recycled concrete aggregate (RCA) obtained by crushing concrete wastes from construc-
tion and demolition wastes (CDW) has recently attracted special interest in civil engineering. 
The utilization of CDW in the production of concrete, especially concrete waste as aggregate, 
reduces the environmental damage of natural aggregate reserves consumption and their envi-
ronmental impact, as well as minimizes the damage of these wastes to the environment (Çakır, 
2014; McGinnis et al., 2017; Thomas et al., 2018). The major disadvantage of the RCA is 
the weak mortar layer adhered on its surface. The weak mortar layer detracts from many of 
the RCA properties, including its water absorption capacity; thus, there are limits to the use 
of RCA and its inclusion level in concrete mixtures (Tegguer, 2012; Yang and Lim, 2018). In 
addition, the presence of more than one interfacial transition zone (ITZ) between aggregates 
and cement paste in recycled concrete aggregate, which is the weakest phase in concrete, is 
the most important weakness of RCA compared to natural aggregate. Further, the mechanical 
properties of concrete produced with RCA is related to the water/cement ratio, the cement 
amount, the aggregate quality, porosity as well as the aggregate-matrix interface bond of the 
original concrete (Yehia et al., 2015).

Compared to natural aggregate, RCA is a composite material composed by natural aggre-
gate and old cement mortar. The weak and porous structure of the attached mortar on the 
surface of RCA is responsible for its high water absorption capacity (Verian et al., 2018; Kurda 
et al., 2019), the high Los Angeles wear loss (Pedro et al., 2017; Omary et al., 2016, Soares et 
al., 2014; Younis et al, 2013) and the low density (Beltran et al., 2014; Gesoğlu et al., 2015; 
Kapoor et al., 2016) compared to natural aggregate. One of the critical parameters affecting the 
use of RCA is the variability of aggregate properties. Therefore, the quality of RCA depends on 
the quality of the parent concrete (Yehia et al., 2015; Assaad and Daou, 2017; Zou and Chen, 
2017).

Many researchers have stated that the magnitude of the decrease in strength of the concrete 
containing RCA is dependent on the type and compressive strength of the original concrete, the 
replacement rate, the water/cement ratio and the moisture content of the aggregate (Dimitriou 
et al., 2018). It is possible to better understand the strength of the RCA by using recycled 
aggregates of different quality. Experimental studies show that concrete containing RCA is 
clearly more permeable than concrete containing natural aggregate. However, as the durability 
of concrete is dependent on permeability, it is possible to enhance the concrete durability with 
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supplementary, cementitious materials such as fly ash, silica fume, and granulated blast furnace 
slag (Omrane et al., 2017; Dimitriou et al., 2018).

The effect of RCA quality on the properties of fresh and hardened concrete has been 
documented in many previous studies (Kou and Poon, 2015; Etxeberria et al., 2002; Rao et 
al., 2007, Koper et al., 2016). Generally, compared to natural aggregate, the use of RCA in 
concrete increases the drying shrinkage, creep, water absorption by immersion, water absorption 
by capillary action, water permeability, carbonation rate and chloride ion ingress rate. However, 
the compressive strength, tensile strength, abrasion resistance, modulus of elasticity, frost resis-
tance and sulfate resistance are believed to be lower for concrete containing RCA compared to 
concrete with natural aggregate. The lower performance of RCA is generally related to the weak 
and porous structure of the mortar adhered on the surface of the original natural aggregate. For 
that reason, different methods for the determination of the amount of mortar attached on the 
surface of RCA for quality control purpose have been reported by various researchers (Abbas et 
al., 2007; Abbas et al., 2006; Juan and Gutierrez, 2004; Nagataki et al., 2000; Ravindrarajah 
and Tam, 1985). However, those methods such as heat treatment are energy consuming and may 
no longer be sustainable. Hydrochloric acid can also dissolve some aggregate types such as lime-
stone. Therefore, a non-destructive method was proposed in this present study to characterize 
recycled aggregate, specifically the amount of mortar attached in the original natural aggregate.

In this study, the effect of RCA quality on the properties of fresh and hardened concrete 
properties such as compressive strength, splitting tensile strength, density, water absorption 
capacity and porosity accessible to water was investigated. Furthermore, based on the fact that 
the adhered mortar alters more properties of RCA and limits its utilization in concrete, the 
percentage of attached mortar on the surface of RCA was evaluated by X-Ray computed micro 
tomography technique.

2.  EXPERIMENTAL STUDY

2.1  Materials
In this study, an ordinary Portland cement CEM I 42.5R type cement conforming to EN 197-1 
standard with a specific gravity of 3.15 and a Blaine specific surface of 3677 cm2/g was used as 
a binder. The chemical composition and some physical and mechanical properties of Portland 
cement obtained from its manufacturer are given in Table 1.

Aggregates used in the concrete mixes production were obtained from three different 
origins. The first of these aggregates is crushed coarse limestone and fine aggregate. The second 
and third types of aggregate were obtained from the crushing of concrete with two different 
compressive strength levels. The recycled concrete aggregates to be used instead of limestone 
coarse aggregate were obtained from the crushing of concrete waste with a low and high com-
pressive strength (below 30 MPa and above 30 MPa). High strength concrete used to produce 
RCA was produced in laboratory while low strength concrete was supplied from the demolition 
of an old building and brought to the laboratory. The collected concrete wastes were first divided 
into small pieces by the help of sledge hammers, and then they were brought to the size of aggre-
gate with the help of a laboratory type jaw crusher. Aggregates coming out of the crusher were 
sieved from 25 mm, 15 mm and 5 mm sieves, and were stored to be used in the production of 
concrete mixes. The crushed recycled aggregates were also remixed in order to fulfill the same 
gradation with limestone aggregate. The sieve analysis results as well as the grading curves with 
respect to TS 802 limitations are presented in Figure 1. LRCA and HRCA denote the RCA 

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-30 via free access



60	 Volume 15, Number 2

obtained from the crushing of waste concrete having compressive strength below 30 MPa and 
waste concrete having compressive strength above 30 MPa, respectively.

The surfaces of coarse recycled aggregate were also analyzed using an optical microscope 
and the surface views are presented in Figure 2. As seen in Figure 2, RCA obtained from the 
crushing of waste concrete having compressive strength below 30 MPa (LRCA) has more 
attached mortar on its surface compared to RCA obtained from the crushing of waste concrete 
having compressive strength above 30 MPa (HRCA).

Polycarboxylic ether-based high range water reducing (HRWR), as workability agent, was 
added to the fresh concrete mixture where it was needed to achieve the required flow. The used 
chemical admixture conforms to ASTM C 494 type F and can be used up to 1.5% of cement 

TABLE 1.  Chemical, physical and mechanical properties of cement.

Chemical composition (%)

SiO2 19.52

Al2O3 5.39

Fe2O3 2.48

CaO 62.5

MgO 1.09

Na2O 0.27

K2O 0.8

SO3 3.41

Loss on ignition (LOI) 1.42

Cl– 0.0074

Insoluble residue (IR) 0.63

Free CaO 1.06

Physical properties

Specific gravity 3.1

Specific surface area (cm2/g) 3677

Initial setting time, (min) 150

Final setting time, (min) 200

Compressive strength (MPa)

3-day 30.8

7-day 39.3

14-day 45.4

28-day 49.6
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FIGURE 1.  Tested limestone, HRCA and LRCA particle’s grading with respect to TS 802 
limitations.
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FIGURE 2.  Microscopic images of LRCA (left), HRCA (right).

�

weight. Some technical properties of the used superplasticizer given by its manufacturer are 
shown in Table 2. The flow values of the fresh concrete were determined in accordance with 
ASTM C 1437-15 and the recorded flow values were in the range of 150 ± 20 mm.

2.2  Concrete composition and curing
In this study, three concrete mixes were designed. In addition to the control mix (RC) contain-
ing limestone aggregate, two different mixes containing RCA, one with 100% replacement 
ratio of coarse limestone by LRCA (LRC) and another with 100% replacement ratio of coarse 
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limestone by HRCA (HRC) were produced. Due to the lower specific gravity of RCA compared 
to that of limestone aggregate, the replacement of the aggregates was made in terms of volume. 
The water/cement ratio was kept constant at 0.5 while the coarse aggregate/total aggregate ratio 
was 0.58. The composition of the concrete mixes is given in Table 3. The target slump was 150 
± 20 mm. Due to the higher water absorption capacity of RCA compared to natural aggregate, 
for mixes containing RCA, extra water equivalent to the water absorption capacity of the RCA 
was added during the mixing process to avoid the decrease of required mixing water as suggested 
by many researchers (Abreu et al., 2018; Ferreira et al. 2011; Fonseca et al., 2011).

The concretes were mixed in a drum type mixer of 40 dm3 capacity. For the RC mix, 
aggregates and cement were dry-mixed for 2 minutes. Thereafter, mixing water and superplas-
ticizer were added to the dry mix and mixing was resumed until a homogenous mixture was 
achieved. For HRC and LRC mixes, first, aggregates with an extra amount of water equivalent 
to the absorption ratio of the RCA were mixed for 2 minutes and then set aside for 30 minutes 
before adding the other ingredients. The fine aggregate and cement were then added to the mix. 
Thereafter, mixing water and plasticizer were added and mixed until achieving a homogenous 
mixture. The samples were demolded one day after casting and cured in water at approximately 

TABLE 2.  Technical properties of used admixture.

Technical properties

Structure of the material Polycarboxylic Ether-based

Color Amber

Density 1.069–1.109

pH 5–7

Alkaline content (%) ≤3

Chlorine content (%) ≤0.10

Application ratio (%) 0.8–1.5

TABLE 3.  Composition of the concrete mixes.

Components (kg/m3) RC HRC LRC

Cement 404 404 404

Water 202 202 202

Fine limestone aggregate 813 813 813

Coarse Limestone Aggregate 1108 0 0

Coarse RCA 0 947 856

Superplasticizer 2.0 2.7 2.5

Fresh unit weight (kg/m3) 2325 2155 2068
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20°C for 28 days. The specimens used were 100 x 200 mm cylinders for splitting tensile strength 
and 100 mm cubes for both compressive strength and water absorption.

2.3  Tests
Limestone and RCA aggregates were tests for grading (ASTM C136/C136M-14), bulk density 
(ASTM C29/C29M-17a), water absorption (ASTM C127-15 and ASTM C128-15), Los 
Angeles wear (ASTM C535-16) and flakiness index (TS EN 933-3). Slump test (TS EN 12350-
2) and fresh state density (TS EN 12350-6) were performed on fresh state concrete whereas 
the hardened state tests including density (TS EN 12390-7) compressive strength at 7 and 28 
days (TS EN 12390-3), splitting tensile strength at 7 and 28 days (TS EN 12390-6), water 
absorption and porosity (ASTM C 642-13) at 28 days were performed on hardened concrete.

3.  RESULTS AND DISCUSSIONS

3.1  Physical properties of aggregates
Some physical properties of limestone and recycled coarse aggregates are given in Table 4.

As seen from Table 4, LRCA and HRCA exhibit lower density and higher water absorption 
than limestone aggregate. However, HRCA has a higher quality than LRCA. The inferior quality 
of recycled aggregates may be due to the weak mortar layer adhered on their surface. This weak 
mortar layer detracts from many properties of the RCA, including its water absorption capacity; 
thus it can limit the use of RCA or lowers its inclusion level in concrete mixtures. The adhered 
mortar content, the aggregate fraction content as well as the porosity of the RCA was evaluated 
with X-Ray computed micro tomography and the results are presented in Figure 3. As seen from 
Figure 3, the attached mortar and aggregates content are 61% and 35.5% for LRCA whilst the 
attached mortar and aggregate contents for HRCA are 45.9% and 53.7%, respectively. The 

TABLE 4.  Properties of limestone aggregate, LRCA and HRCA.

Properties

Limestone aggregate LRCA HRCA

0–5 mm
5–15 
mm

15–25 
mm

5–15 
mm

15–25 
mm

5–15 
mm

15–25 
mm

Bulk density, (kg/m3)

Compacted 1889 1573 1548 1194 1128 1334 1274

Loose 1673 1480 1466 1076 1052 1215 1196

Specific gravity

Dry 2.632 2.654 2.693 2.043 2.092 2.263 2.312

Saturated surface dry 2.656 2.676 2.711 2.218 2.266 2.387 2.432

Water absorption (%) 0.92 0.3 0.23 8.57 8.32 5.47 5.21

Los Angeles coefficient 
(LA)

25.6 40.52 27.04

Flakiness index (%) 20.15 16.23 29.3
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porosity of LRCA and HRCA was also evaluated as 3.5% and 0.4%, respectively. White, red 
and black colors denote aggregate, mortar and porosity of RCA.

The Los Angeles (LA) abrasion test results showed that LRCA was less resistant to frag-
mentation as seen from Table 4 compared to limestone and HRCA aggregate.

3.2  Fresh concrete results
The results of the slump and fresh state unit weight values of the concrete mixes are given in 
Table 5. As seen from Table 5, the replacement of coarse limestone aggregate with coarse RCA 
causes a decrease in the slump value. This decrease may be due to the angular and roughened 
surface texture of RCA that increases internal friction in fresh concrete. The fresh unit weight of 
the concrete mixes decreased up to 7.3% and 11% when coarse limestone aggregate was replaced 
with coarse HRCA and LRCA, respectively. The decrease of the unit weight is expected as the 
unit weight of the fresh concrete depends directly on the specific weight of its ingredients and 
the specific gravity of HRCA and LRCA are lower than that of limestone aggregate.

FIGURE 3.  Percentage of aggregates, mortars and porosities in LRCA (a and b) and HRCA (c and 
d) obtained by X-Ray computed micro tomography.

     

     

a b 

c d 
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3.3  Hardened Concrete Mechanical and Physical Results
Compressive strength, splitting tensile strength and hardened state unit weight results of con-
crete mixes are given in Table 6. Each result is the average of three tests on the concrete samples.

When the results in the Table 5 are examined, it is seen that the compressive strength, 
splitting tensile strength and unit weight of the 28 days cured concrete mixes change between 
45 MPa and 72.7 MPa, 2.85 MPa and 4.05 MPa and 2008 kg/m3 and 2226 kg/m3, respectively. 
Compared with the reference concrete (RC), 7 days compressive strength of HRC and LRC 
samples were determined to decrease by 10% and 29%, respectively. The 28 days compressive 
strength of HRC and LRC samples also decreased by 16% and 38%. The results are in accor-
dance with the results presented by Thomas et al., 2018. The authors reported that when 100% 
of natural aggregates were replaced with recycled concrete aggregate, the compressive strength 
decreased by 11–19%. The decrease of strength may be due to the low strength of recycled 
aggregate compared to natural aggregate and also to the porous and cracked structure of the 
cement mortar layer attached to the recycled aggregate particles (Xu et al., 2017). Due to con-
crete being a composite material composed by aggregate phase, mortar phase and the interface 
between the aggregate and the mortar phases, the strength of concrete depends largely on the 
strength of both phases. Among the three phases, the aggregate phase is the strongest, and it 
can observed that the higher the aggregate quality the higher the concrete strength. Moreover, 
Thomas et al. (2018) reported that three types of interfacial transition zones exists in concrete 
containing RCA, such as, the zone between the original aggregates and the old attached cement 
mortar, the zone between the old cement mortar and the new cement mortar as well as the zone 
between the aggregates and the new cement mortar. This presence of more than one interfacial 
transition zone in RCA concrete, the weakest among the three concrete phases, results in lower 
strength when compared with natural aggregate concrete.

TABLE 5.  Slump and fresh state unit weight results.

Concrete code Slump (mm) Unit weight (kg/m3)

RC 165 2325

HRC 157 2155

LRC 153 2068

TABLE 6.  Unit weight, splitting tensile strength and compressive strength of the concrete mixes.

Concrete code
Unit weight 
(kg/m3)

Splitting tensile strength (MPa) Compressive strength (MPa)

7 days 28 days 7 days 28 days

RC 2226 3.60 4.05 46.5 72.7

HRC 2081 3.22 3.31 41.8 60.8

LRC 2008 2.75 2.85 33.1 45

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-30 via free access



66	 Volume 15, Number 2

By analyzing splitting tensile strength results, it is observed that compared with reference 
concrete (RC), the 28 days splitting tensile strength of HRC and LRC samples decreased by 
18% and 30%, whereas the 7 days splitting tensile strength decreased by 11% and 24%. The 
results obtained from the study are in line with those obtained by Kou et al., 2011. The authors 
concluded that the splitting tensile strength decreased by 18.8–21.7% when 100% of natural 
aggregates are replaced with RCA. In general, it is seen that the concrete mixes containing 
limestone aggregates have a higher compressive and splitting tensile strength than the concrete 
containing RCA. Also, the decrease of the strength is more significant when RCA are obtained 
from low strength concrete. The lower splitting tensile strength of HRC and LRC mixes may 
be attributed to poor bonding between paste and aggregates as well as the presence of weak and 
porous ITZ in HRC and LRC as compared to RC (Barbudo et al., 2013; Muduli et al., 2019). 
Furthermore, the inferior property of LRCA as compared to HRCA is responsible of the lower 
splitting tensile strength of LRC when compared with HRC mixes.

The results of water absorption by immersion and porosity accessible to water of concrete 
mixes are given in Table 7. Each result is the average of three tests on concrete samples.

The results of water absorption and porosity show that physical properties are altered by 
the use of coarse RCA. High water absorption and porosity values were obtained in the HRC 
and LRC rather than in the control mix. Water absorption and porosity increased up to 54% 
and 45% when coarse limestone aggregate was 100% replaced by LRCA. The more rough and 
porous structure of RCA surface and the excess water absorption of cement mortar adhered 
to the surface of the original aggregate may be considered as the cause of the increase in water 
absorption of the HRC and LRC concrete mixes. The results obtained from the study are in 
accordance with that obtained by Pedro et al., 2018. The authors reported the water absorp-
tion by immersion increased by 26.1–77.2% when 100% of natural aggregates are replaced 
with RCA. However, several authors reported that the use of mineral additives such as fly ash, 
silica fume, slag and metakaolin significantly reduces the negative impact of RCA-containing 
mixtures on water absorption capacity (Mardani-Aghabaglou et al., 2019; Kurda et al., 2019; 
Çakır, 2014).

4.  CONCLUSION
The effects of recycled concrete aggregate (RCA) quality on the fresh and hardened properties of 
concrete such as workability, fresh unit weight, compressive strength, splitting tensile strength, 
density, water absorption and porosity accessible to water have been investigated. Based on the 
experimental results, the following conclusions can be drawn:

TABLE 7.  Water absorption and porosity of the concrete mixes.

Concrete code

Water absorption (%) Porosity (%)

7 days 28 days 7 days 28 days

RC 6.18 4.44 13.19 9.86

HRC 7.02 5.75 15.26 11.63

LRC 8.98 6.84 18.59 14.32 D
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•	 The properties of recycled aggregates derived from lower strength concrete parent 
(LRCA) and higher strength concrete parent (HRCA) such as water absorption, density, 
specific gravity and Los Angeles abrasion are of lower quality than that of the lime-
stone aggregate.

•	 The attached mortar and aggregates content are 61% and 35.5% for LRCA whilst the 
attached mortar and aggregate contents for HRCA are 45.9% and 53.7%, respectively.

•	 The fresh unit weight of the concrete mixes decreased up to 7.3% and 11% when coarse 
limestone aggregate was replaced with coarse HRCA and LRCA, respectively.

•	 Compared with reference concrete (RC), 7 days compressive strength of HRC (concrete 
made with HRCA) and LRC (concrete made with LRCA) samples were determined 
to be decreased by 10% and 29%, respectively. The 28 days compressive strength also 
decreased by 16% and 38%.

•	 The decrease of the strength is more significant when RCA are obtained from low 
strength concrete.

•	 The 28 days splitting strength of HRC and LRC samples decreased by 18% and 30% 
whereas the 7 days splitting strength decreased by 11% and 24% in comparison with 
reference concrete (RC).

•	 The results of water absorption and porosity showed that the physical properties are 
altered when natural aggregate is replaced by coarse RCA in concrete.
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