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EVALUATION OF SELECTED DYNAMIC MODELS 
IN COMPARISON WITH HOT BOX TEST 

RESULTS FOR MEASUREMENT OF BUILDING 
ENVELOPE THERMAL PROPERTIES

Xinrui Lu1 and Ali M. Memari2

ABSTRACT
This research is mainly focused on the experimental measurement of R-value by 
several different models. Building energy consumption accounts for about 40% of 
the total energy use in the U.S, and therefore accurate energy simulation is desired. 
The R-value is one of the key parameters that can influence the energy simulation 
results and therefore is of great importance. The Average Model has long been the 
most widely accepted method to measure the thermal properties of building compo-
nents. However, its steady-state assumption and dependence on temperature differ-
ence limit its use especially for in-situ measurement. In this study, several dynamic 
models, including the Pentaur Model and R-C Network Models, are studied with 
test data obtained from a series of hot box tests performed in the Building Enclosure 
Testing Laboratory. The results show that the 3R2C model has the best performance 
and a desirable stability of accuracy with respect to different levels of temperature 
difference, and therefore is recommended for practical measurement. The results also 
indicate that unlike the Average Model, the accuracy of dynamic models does not 
necessarily depend on the level of temperature difference.
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1.  INTRODUCTION
In recent years a significant amount of effort has been made to reduce building energy con-
sumption (Ma et al., 2012). While there are many factors influencing the energy performance 
of buildings, such as the climate zone, HVAC system and renewable energy production, the 
building envelope system plays a critical role as space heating/cooling energy represents a large 
amount (35% to 70%) of total building energy consumption (Atsonios et al., 2017). The 
thermal resistance (R-value) is a key parameter of the building envelope system, and accurate 
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quantification of R-value is highly desirable. The theoretical calculation (design R-value) is 
useful but may vary due to construction irregularities, material deterioration and quality of 
workmanship; therefore, in-situ measurement of R-value is needed, in particular for specifica-
tion of products. For example, Peng and Wu (2008) proposed a study showing that the R-value 
calculated from the in-situ measurement deviates up to 24% compared with the design R-value. 
For accurate whole-building energy simulation and energy retrofit of existing buildings, the real 
R-value is also a necessity. Cesaratto and De Carli (2013) found that the difference between the 
measured and design R-value is about 20% for new or refurbished buildings, which leads to 
a difference of 11% to 14% in the net heating energy demand by building energy simulation.

The traditional well-established model to measure the thermal properties for building 
envelope systems is the “Average Model,” which assumes steady-state heat flow passing through 
the specimen and therefore the thermal storage effect can be neglected. Typical applications of 
the Average Model includes the Hot Box Test (HBT) Method as suggested by ASTM C1363-
11 Standard for measurement in laboratory, and the Heat Flow Meter (HFM) Method. The 
HFM method is internationally accepted and the most widely used one for in-situ measurement. 
Desogus et al. (2011) used the HFM Method to compare the non-destructive and destructive 
in-situ test method for a brick wall. Ahmad et al. (2014) measured the in-situ thermal resistance 
of hollow reinforced precast concrete walls by the HFM Method. According to the literature, it 
is well understood that as the HFM Method is based on the steady-state assumption, it requires 
a large temperature difference between interior and exterior environment and a relatively long 
testing period. Therefore, for buildings without capacity to effectively heat up the interior space 
and for cases when a shorter testing period is desired, the HFM Method is not suitable.

The HBT Method, on the other hand, does not have such limitations. The HBT Method 
generally includes the use of two controlled chambers: the climate chamber and the metering 
chamber. The metering chamber is used to simulate the indoor environment and the climate 
chamber is used to simulate the outdoor environment. With the capability of controlling both 
the interior and exterior environments, a desired level of temperature difference can be created 
for application of the Average Model. Although it is relatively easy for the HBT Method to 
reach high accuracy and quantify uncertainties, it requires large facilities and building envelope 
mock-up assemblies as also indicated by Meng et al. (2017), which is not suitable for the in-situ 
measurement of existing buildings.

Based on the above discussion, the Average Model is not appropriate for non-steady state 
conditions, especially when the dynamic behavior of building envelope systems is of concern, 
such as the in-situ environment condition. Moreover, for cases when the documented thermal 
properties are not accurate or the documentation is missing, which is a common situation 
for existing buildings, the in-situ measurement for both R-values and thermal capacitances is 
needed. Therefore, models that can consider the dynamic performance of building envelope 
systems are of great interest. In the past decade, considerable efforts have been made to explore 
the application of different dynamic models as introduced in detail in Section 2. However, 
due to the complexity of dynamic models, a general consensus on the choice of the model 
that performs better or on the accuracy of the dynamic models compared to the commonly 
accepted Average Model is somewhat missing. A comparison of the dynamic models with the 
Average Model by a hot box test is then needed before the dynamic models can be widely used 
for in-situ measurement. As a hot box test is performed under a controlled environment and 
thus can reach desirable accuracy for the Average Model, such a comparison provides direct 
validation for the feasibility of dynamic models. This paper aims to provide a comparative study 
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for the application of several dynamic models by using a series of hot box tests performed in 
the Building Enclosure Testing Laboratory (BETL).

2.  DYNAMIC MODELS
There are several types of dynamic models that can be used for the in-situ measurement of 
building thermal properties. Anderlind (1992) published a regression model taking the dynamic 
behavior of the measured wall into consideration as a linear relationship with past temperature 
changes. This model is later named by the author as the Pentaur Model. Jiménez et al. (2008) 
proposed a study about the identification of thermal properties by R-C Network Models using 
the MATLAB IDENT toolbox. The authors also described how the R-C Network models can be 
related to the general ARMAX models. Naveros et al. (2014) used a grey-box model to measure 
the thermal resistance and capacitance of a simple homogeneous wall under real weather con-
ditions. It should be noted that the R-C Network models are also grey-box models described 
by state-space equations. Deconinck and Roels (2016) did a comparative study regarding the 
Average Model, the Pentaur (Anderlind’s) Model, the AR(MA)X-models and the R-C Network 
Models. The authors found that the R-C Network Models generally lead to slightly lower 
estimates of R-values than other dynamic models, while all dynamic models show improved 
performances compared to the Average Model. The authors then concluded that the Average 
Model is easy-to-use and reliable for winter measurements, whereas the dynamic models are 
more complex to use but offer a more versatile applicability. It is worth mentioning that as 
also stated by the authors, the ARX-models are black-box, meaning that the model parameters 
have no direct physical interpretations. In other words, the ARX-models are purely data-driven 
by means of multiple linear regression. In contrast, the R-C Network Models are grey-box, 
meaning that the model is constructed based on physical knowledge and therefore physical 
interpretations can be attached to the model parameters. It should also be noted that while the 
Pentaur Model is also an ARX-model, its stationary part is based on heat transfer principles 
and therefore provides information for the R-value.

Biddulph et al. (2014) also performed a study to compare the Average Model and the R-C 
Network Models by in-situ measurement. The dataset was collected during winter. The authors 
concluded that compared with the steady-state Average Model, although with higher uncer-
tainty in results, the R-C Network Models can be used for in-situ measurement to significantly 
reduce the monitoring period and do not require a consistently high temperature difference as 
the Average Model, which provides the potential for summer-time measurement.

A new study conducted by Gori and Elwell (2018) also showed that while the error of 
Average Model increases with the decrease of temperature difference, the use of dynamic models 
can compensate for this limitation and therefore is applicable for in-situ measurement outside 
the winter period when the indoor-outdoor temperature difference is generally low. Fonti et al. 
(2017) specifically studied the performance of R-C Network Models of different orders by the 
MATLAB IDENT toolbox. By comparing the identification parameters of the models such as 
the FPE (Final Prediction Error) and RMSE (Root-Mean-Square Error), the authors concluded 
that the second-order R-C Network Model (3R2C) has the best performance.

In this paper, aside from the Average Model, the Pentuar Model and the R-C Network 
Models are selected for analysis. R-C Network Models of different orders are explored, including 
first-order (2R1C), second-order (3R2C) and third-order (4R3C). The selected models together 
with the Average Model are briefly introduced as follows.
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TABLE 1.  Model Attributes.

Model Types Attributes

Average Model Steady-State Calculation

Pentuar Model Multiple Regression

R-C Network Models Grey-Box Estimation

2.1  The Average Model
The Average Model is the most widely accepted model for measuring the thermal properties 
of building components, both on site and in laboratory. This model is based on a steady-state 
assumption, meaning that heat storage of the tested wall can be ignored, and therefore the 
amount of heat flux passing through each layer inside the wall remains the same. Hence, the 
heat flux can be described as:

	
qi = 1

R
  Tint

i −Text
i( ) 	 (1)

where q is the measured heat flux, Tint and Text are the interior and exterior surface temperatures, 
and R is the thermal resistance to be calculated. The superscript i represents the ith measurement. 
The Average Model has become the standard measurement method for thermal properties of 
building components, as suggested by ASTM C1363 and ISO 9869 standards. However, as also 
indicated by Atsonios et al. (2017) and Deconinck and Roels (2016), the in-situ application 
of the Average Model is often seasonally bounded as it requires a large temperature difference 
between the interior and exterior environment. It also requires a sufficiently long testing period 
for the Average Model to provide valid results on-site, which can also limit the use of this model 
as one will generally want a shorter testing period as possible especially for existing buildings 
with occupants. It is also worth mentioning that, even though the Average Model is capable 
of calculating the R-value, it provides no information about the thermal capacitance, nor the 
dynamic behavior of the building envelope system. For cases when whole-building simulation 
is needed with building properties measured on site, having only the R-value is not enough, as 
most building simulation software tools require both the R-value and the thermal capacitance.

2.2  Pentaur Model
The Pentaur Model was developed by Anderlind (1992) for calculating the R-value consider-
ing the dynamic performance of the measured wall. The heat flux passing through the wall is 
described as three separate parts: the first part is a steady-state stationary behavior including the 
R-value to be calculated, the second and the third parts represents the dynamic performance of 
the wall relating the current heat flux to the past temperature changes of interior and exterior 
surfaces. The model is descried as in Equation (2).

	
qi = 1

R
Tsurf , int

i −Tsurf , ext
i( ) + Al Tsurf , int

i− p+l −Tsurf , int
i− p+l−1( )

l=1

p

∑ + Bl Tsurf , ext
i− p+l −Tsurf , int

i− p+l−1( )
l=1

p

∑ 	 (2)
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As Equation (2) shows, q is the heat flux, R is the thermal resistance to be calculated, Tsurf,int 
and Tsurf,ext stands for the interior and exterior surface temperature and superscript i means 
the ith measurement point. A and B are the regression coefficients and p is the number of past 
data points one chooses to use. As mentioned above, the first part of Equation (2) describes 
the steady-state behavior of the wall, while the second and third parts consider the dynamic 
influence in the measured heat flux qi as a summation of the past surface temperature changes. 
Users need to determine the number of historical points to use in the Pentaur Model, i.e., the 
p value. For example, if p = 5, the Pentaur Model considers the heat flux measured at current 
step to be influenced by the past five surface temperature changes. A detailed introduction of 
the Pentaur Model can also be found in another study performed by Lu and Memari (2018). As 
can be observed from the above equation, there is no thermal capacitance term in the Pentaur 
Model, meaning that the dynamic part of this model is not based on physics principles, but 
rather is data-driven. Therefore, the Pentaur Model can be regarded as a type of ARX-model 
partially based on physics.

2.3  R-C Network Models
The R-C Network Models are lumped resistance-capacitance models based on real energy 
balance relationships. This type of model considers the total thermal resistance of the wall 
as a series of separate thermal resistances between nodes and the total thermal capacitance as 
separate capacitances lumped at each node. It is an analogy to the electric circuit and with the 
lumped capacitance assumption, the thermal storage effect can be treated only at each node. 
R-C Network Models can be utilized with different orders such as 2R1C or 3R2C, however, 
higher orders do not necessarily lead to better accuracy. Figure 1 shows a typical second-order 
R-C Network Model (3R2C).

The energy balance at node 1 and 2 is given by Equations (3) and (4), with T1
j  and T2

j  
the temperatures at node 1 and 2 for the jth step.

FIGURE 1.  3R2C Model.
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C1

dT1
j

dt
=
Tint

j −T1
j

R1
−
T1

j −T2
j

R2
	 (3)

	
C2

dT2
j

dt
=
T1

j −T2
j

R2
−
T2

j −Text
j

R3
	 (4)

The heat flux input can be described as Equation (5):

	
q j = 1

R1
Tint

j −T1
j( ) 	 (5)

Rearranging the above equations to get the matrix form of the grey-box model with R1, 
R2, R3, C1 and C2 as identifiable parameters results in the following:

	

dT1
j

dt
dT2

j

dt
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q = − 1

R1
0

⎡

⎣
⎢

⎤

⎦
⎥ 
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⎢
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1
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0
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⎣
⎢

⎤

⎦
⎥ 

Tint
j

Text
j  

⎡

⎣
⎢

⎤

⎦
⎥   	 (7)

This study uses the MATLAB IDENT toolbox to solve for the above state-space equa-
tions. The IDENT toolbox is capable of estimating the parameters in the state-space equations 
(greyest function) as well as providing uncertainty information for the solution, such as the Root-
Mean-Square Error (RMSE) and the Final Prediction Error (FPE). It should be noted that for 
the grey-box estimation, some measured data need to be used as the input for estimation and 
other measured data need to be used as the output for validation, i.e., to evaluate how good 
the estimated parameters are. The goal of this kind of estimation is to minimize the difference 
between the predicted output and the measured output. For this study, the measured interior 
and exterior surface temperatures are selected as the input and the measured heat flux is selected 
as the output. The choices of input and output are totally arbitrary.

The main difference between the R-C Network Models and the Pentaur Model is that 
R-C Network models are based on energy balance equations; therefore, the real value of the 
wall thermal capacitance can be calculated. In contrast, the Pentaur Model does not provide 
any information regarding the thermal capacitance. It is also worth mentioning that the nodes 
in the R-C Network Models are conceptual and do not represent any specific locations inside 
the wall. Likewise, the R parameters do not represent thermal resistance of any specific layers. 
Only the summation of the R parameters has a practical meaning as the overall thermal resis-
tance of the wall.
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3.  EXPERIMENTAL SETUP
This section includes an introduction about the test facility, the specimen, and measurement 
instrumentation. All the tests were performed in the hot box facility of the Building Enclosure 
Testing Laboratory (BETL) at the Pennsylvania State University. A series of 14 hot box tests 
were carried out, each lasting for around 36 hours with temperature differences ranging from 
10°C to 40°C. The hot box test facility provides approximately 9.3 m2 of controlled environ-
ment and includes two distinct chambers: the metering chamber used to simulate the indoor 
environment and the climate chamber used to simulate the outdoor chamber. Heaters and 
air-conditioners were used to control the temperatures in each chamber. The limitation of the 
facility in this study was that the metering chamber could only be heated to around 30°C and 
therefore could not provide a higher temperature difference between two chambers.

The specimen is 110 cm * 70.1 cm in size and the material properties of the specimen are 
listed in Table 2 (Wolfgang, 2010).

Fenwall 192–103LEW-A01 thermistors were used for temperature measurement with 
an accuracy of ±0.1°C. A HFP01 HukseFlux heat flux sensor (HFP 01) was used for heat 
flux measurement with an accuracy of ±5% on walls according to the manufacture’s product 
manual. The 16-bit FP AI-110 was used as the Analog-Digital Converter controlled by Labview. 
For both the interior and exterior surfaces, four thermistors were used and the readings were 
averaged to get the surface temperatures. Sensors were mounted on a representative part of the 
specimen avoiding the edges. A detailed description of the hot box facility and the specimen can 
also be found in a previous study by Lu and Memari (2018), which has a specific focus on the 
experimental setup of hot box tests. By performing new tests covering a range of temperature 
differences, this paper aims to provide a complete understanding of the performances of the 
explored dynamic models.

The measurement uncertainty is calculated according to ISO/IEC Guide (GUM) taking 
into consideration the equipment accuracy with a coverage factor of 2. The uncertainty for the 
measured R-value (uR) is obtained based on the following expression:

	
uR
2 = ∂R

∂q
⎛
⎝⎜

⎞
⎠⎟
2

uq
2 + ∂R

∂Tint

⎛
⎝⎜

⎞
⎠⎟

2

uTint

2 + ∂R
∂Text

⎛
⎝⎜

⎞
⎠⎟

2

uText

2 	 (8)

where uq is the uncertainty of the heat flux measurement and uTint
 and uText

 are the uncertainties 
of the interior and exterior surface temperature measurements? The uncertainties for each test 
are summarized in Table 3.

TABLE 2.  Specimen Construction.

Layers Thickness (mm) Conductance (W/m2K)

Parging 9.5 75.59

Concrete Masonry Unit 192.5 1.74

Fiberglass 38.1 0.89

Overall Design R-value: 1.528 
m2K/W
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4.  RESULT AND DISCUSSION
A series of 14 tests were performed, with a temperature difference ranging from 10°C to 40°C. 
For each test, the Average Model, the Pentaur Model, and the R-C Network Models of different 
orders are used for analysis and the results are summarized in Table 44.

The results in Table 4 suggest that all types of models studied provide noticeable differ-
ences compared to the design R-value (1.528 m2K/W), although the variation among models is 
relatively small. Furthermore, the second to the last row of 4 shows that the standard deviation 
of the Average Model with respect to changes of temperature differences is the highest among 
all models, which is expected as the Average Model is sensitive to temperature difference. The 
dynamic models show lower standard deviations than the Average Model, meaning that the 
dynamic models do not have a strong dependence on the temperature difference as in the case 
of the Average Model. Therefore, the dynamic models are more applicable for in-situ measure-
ment especially when it is difficult to create a large indoor-outdoor temperature difference. It 
should also be noted that while all dynamic models show improved performance, the 3R2C 
model shows the lowest standard deviation, meaning that the 3R2C model turns out to be the 
most “stable” one with respect to changes of temperature difference. The result also validates 
that higher orders of R-C Network Models do not necessarily lead to better performance, as 
the 4R3C model has a higher standard deviation than the 3R2C model with respect to changes 
of temperature difference.

TABLE 3.  Measurement Uncertainty

Test Series
Temperature 
Difference (°C)

Uncertainty 
(m2K/W)

1 10 ±0.095

2 10 ±0.075

3 15 ±0.084

4 15 ±0.102

5 20 ±0.094

6 20 ±0.101

7 25 ±0.090

8 25 ±0.103

9 30 ±0.096

10 30 ±0.097

11 35 ±0.096

12 35 ±0.100

13 40 ±0.095

14 40 ±0.101
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By setting the R-value calculated from the Average Model as the baseline, the mean 
R-values calculated from the dynamic models are expressed as percentage difference in the last 
row of Table 4. It can be seen that the mean R-values calculated from the dynamic models are 
reasonably close to the Average Model, with percentage differences ranging from 0.96% to 
5.38%. It should be noted that a higher percentage value here does not necessarily mean lower 
accuracy, as the baseline for comparison is the mean R-value from Average Model. Instead, 
it shows how the dynamic model output differs from the output of the Average Model in an 
average sense. The percentage difference with respect to a certain temperature difference level 
can be calculated according to the data provided in Table 44 based on one’s need. The model 
accuracy is further elaborated in the following discussion.

To have a better understanding of the results, the R-values calculated based on different 
models with respect to changes of temperature difference are plotted in Figure 2. It can be 
observed from Figure 2 that when the temperature difference is relatively small (10°C), the 
R-values calculated from different models show large difference compared with the Average 

TABLE 4.  R-value Calculated by Each Model.

Test 
Series

Temperature 
Difference 
(°C)

R-value, 
m2K/W 
(Average 
Model)

R-value, 
m2K/W 
(Pentaur 
Model)

R-value, 
m2K/W 
(2R1C 
Model)

R-value, 
m2K/W 
(3R2C 
Model)

R-value, 
m2K/W 
(4R3C 
Model)

1 10 2.173 1.678 1.627 1.627 1.708

2 10 1.840 1.711 1.696 1.764 1.770

3 15 1.858 1.808 1.864 1.689 1.696

4 15 1.917 1.649 1.654 1.669 1.652

5 20 1.764 1.742 1.790 1.671 1.638

6 20 1.826 1.795 1.701 1.701 1.706

7 25 1.638 1.803 1.724 1.731 1.735

8 25 1.760 1.908 1.553 1.708 1.707

9 30 1.730 1.858 1.922 1.734 1.739

10 30 1.742 1.820 1.764 1.716 1.865

11 35 1.710 1.808 1.727 1.693 1.698

12 35 1.767 1.800 1.863 1.717 1.721

13 40 1.743 1.812 1.742 1.726 1.730

14 40 1.817 1.848 1.807 1.780 1.785

Standard Deviation: 0.1266 0.0708 0.1000 0.0392 0.0560

R-value Averaged 
Percentage Difference

0 (baseline) 0.96% 3.37% 5.38% 4.49%
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Model. As the temperature difference increases up to 40°C, all types of models give close results. 
It should also be noted that while the R-C Network Models turn out to give very close results 
to the Average Model when the temperature difference is large (40°C), the Pentaur Model 
generally provides slightly higher R-value estimates compared to the R-C Network Models, 
which has also been found in the study by Deconinck and Roel (2016). Therefore, for in-situ 
measurement when the temperature difference is large, using dynamic models and the Average 
Model do not lead to considerably different results. However, when the temperature difference is 
relatively small, dynamic models are recommended (as shown in Figure 2, a temperature differ-
ence of 10°C is enough to be considered as “small” since the results show noticeable variations). 
It is also clearly shown in Figure 2 that compared with the 2R1C model, the 3R2C model and 
4R3C model show better stability, as the results do not fluctuate much with respect to changes 
of temperature difference as in the 2R1C model.

To better evaluate the accuracy of the dynamic models, identification parameters obtained 
from the MATLAB IDENT toolbox for grey-box modeling are used for comparison. RMSE is 
the Root-Mean-Square Error that describes how well the model response fits the estimation data. 
In other words, as mentioned in Section 2.3 that the heat flux has been selected as the output 
variable, RMSE describes how the “predicted heat flux” given by the model fits the “measured 
heat flux.” Therefore, the lower the RMSE value, the better the model performs. For the R-C 
Network Models, two other identification parameters are used to make accurate conclusions on 
the model performance: FPE and FIT. FPE is the Akaike’s Final Prediction error that measures 
the accuracy of the model outputs as well. FIT (Level of Fit) is the normalized root mean squared 

FIGURE 2.  R-value versus Temperature Difference.
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error expressed as a percentage that summarizes the model goodness of fit (similar to RMSE). 
A higher value of FIT means better model accuracy. The three identification parameters are 
averaged for each temperature difference value, and summarized in Table 5.

At first by comparing the identification parameters for each row, one can find that the 
3R2C model always has good accuracy while other models show some variations. For example, 
the FIT of the 3R2C model always remains above 80% while the FIT of the 2R1C Model 
varies from 30.39% to 76.13% and that of 4R3C Model from 69.37% to 90%. In general, the 
3R2C model has the best accuracy with an averaged RMSE of 0.498, an averaged FPE of 0.263 
and FIT of 84.74%, as indicated by the last rows of Table 5 To have a more direct illustration 
and comparison on the accuracy of the dynamic models, the data recorded in Table 5 is further 
plotted in Figure 3 and Figure 4.

TABLE 5.  RMSE of Dynamic Models.

Temperature 
Difference (°C) Pentaur Model 2R1C Model 3R2C Model 4R3C Model

10 0.574 0.487 0.407 0.693

15 1.131 2.162 0.512 0.547

20 1.477 1.545 0.540 0.607

25 1.064 1.365 0.462 0.439

30 0.979 1.228 0.497 0.867

35 1.488 1.744 0.507 0.479

40 1.689 1.451 0.563 0.506

Column Average 1.200 1.426 0.498 0.591

TABLE 6.  FPE of R-C Network Models.

Temperature 
Difference (°C) 2R1C Model 3R2C Model 4R3C Model

10 0.246 0.173 0.606

15 4.828 0.281 0.318

20 2.449 0.302 0.409

25 1.943 0.226 0.205

30 1.557 0.259 0.947

35 3.273 0.269 0.244

40 2.156 0.330 0.271

Column Average 2.350 0.263 0.428
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TABLE 7.  FIT of R-C Network Models.

Temperature 
Difference (°C)

2R1C Model

(in %)

3R2C Model

(in %)

4R3C Model

(in %)

10 76.13 80.59 69.37

15 30.39 83.92 82.12

20 56.58 84.81 82.77

25 52.74 84.44 85.01

30 57.67 82.61 71.42

35 57.99 87.96 88.61

40 71.24 88.86 90.00

Column Average 57.53 84.74 81.33

FIGURE 3.  RMSE of Dynamic Models.
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From Figure 3 it can be observed that the 2R1C Model generally shows higher RMSE 
than the other dynamic models for almost all levels of temperature difference, meaning that it 
is the least accurate model among all the dynamic models explored in this study. The Pentaur 
Model has slightly better accuracy than the 2R1C Model with a lower RMSE value. The accura-
cies of the 2R1C model and Pentaur Model also vary noticeably with respect to the changes of 
temperature difference. The 3R2C and 4R3C models show similar accuracy with lower RMSE 
values than the other two models. However, the 3R2C model has a better “stability” than the 
4R3C model, meaning that the accuracy level of the 3R2C model remains relatively stable 
regardless of the changes of temperature difference as can be clearly observed from Figure 3. It 
should also be noticed that unlike the Average Model that has been widely verified to have an 
improved accuracy with the increase of temperature difference, the accuracy of dynamic models 
does not have a direct dependence on the level of temperature difference. As shown in Figure 
3, larger temperature differences do not necessarily lead to better accuracy.

The discussion above can be further validated by Figure 4. The FPE parameters (solid line) 
of all dynamic models do not show a direct relationship with the level of temperature difference. 
While the 3R2C and 4R3C models show a similar level of accuracy better than the 2R1C model, 
the 3R2C model shows an apparently better stability with respect to the level of temperature dif-
ference considering both FPE and FIT parameters. Regarding all the identification parameters, 

FIGURE 4.  Identification Parameters of R-C Network Models. The solid lines represent the Final 
Prediction Error (left) and the dash lines represent the Level of Fit (right).
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the 2R1C model shows large variations with respect to temperature difference, meaning that 
even though the 2R1C model may perform well for certain cases, its accuracy cannot be guar-
anteed at a constant level. Therefore, for measurement under uncontrolled environment, the 
3R2C model is the preferred one to use. It is worth mentioning here that all these models need 
to be validated in real world building conditions in follow-up research.

5.  SUMMARY AND CONCLUSIONS
In this paper, the application of several dynamic models for measuring the thermal proper-
ties of building components were studied and compared with the standard Average Model. 
A series of hot box tests were performed in the Building Enclosure Testing Laboratory and 
the data was collected for analysis and validation of the studied models. The results show that 
R-values calculated from the dynamic models show percentage differences ranging from 0.96% 
to 5.38% compared to the Average Model, all indicating a noticeable difference with respect to 
the R-value. Therefore, for more accurate evaluation of existing buildings and whole-building 
energy simulation, thermal properties should be measured on-site to obtain the real building 
performance. When the temperature difference is relatively small (10°C in this study), the 
Average Model gives a R-value noticeably different from the ones calculated from the dynamic 
models. When the temperature difference increases, however, all models give close results. The 
Pentaur Model generally leads to a slightly higher R-value estimate compared with the R-C 
Network Models. The model accuracy is also studied using MATLAB IDENT toolbox with 
three identification parameters: RMSE, FPE and FIT. The results show that the 3R2C model 
has the best performance, showing a slightly better accuracy compared with the 4R3C model 
and the best stability. The 2R1C model has the lowest accuracy and relatively large instabil-
ity with respect to temperature difference, and thus is not recommended. For all the dynamic 
models, unlike the Average Model, the level of accuracy does not depend on the temperature 
difference. Considering the model accuracy as well as the stability under all temperature dif-
ferences, the 3R2C model is suggested for practical measurement. It is worth mentioning that 
the uncertainty level for this type of experiment is also dependent on the choice of sensors, and 
therefore if different sensors are used, the uncertainty level needs to be recalculated. While the 
results in this study indicate that the 3R2C model has the best performance, it may not be the 
most “practical” method for in-situ measurement. As the R-C network model requires more 
background knowledge in programming and statistics, the Pentaur Model may be a better 
choice due to its simplicity and convenience. It should also be noted that all the conclusions 
made in this study are only based on the selected type of building envelope system. For other 
types of building envelope systems, such as masonry or concrete block, more tests are needed 
to validate the results. Future work will be focused on the application of these dynamic models 
on different types of building envelope systems and comparison of more sophisticated methods, 
such as the transfer function method and the equivalent wall method. The dynamic models 
explored in this study can be used to measure building thermal properties on site and provide 
accurate inputs for building energy simulation.
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