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IDENTIFYING OCCUPANTS’ APPROPRIATE SEATING 
POSITION AND VIEW DIRECTION IN OFFICE BUILDINGS: 

A STOCHASTIC SHADE CONTROL BASED MULTI-
OBJECTIVE VISUAL COMFORT OPTIMIZATION

Jian Yao1

ABSTRACT
Manually operated solar shades have a significant impact on indoor visual comfort. 
This research investigates occupants’ appropriate seating position and view direction 
in a west-facing office cell using a previously developed shade behavior model. The 
non-dominant sorting genetic algorithm (NSGA-II) based Multi-objective optimiza-
tion was adopted to identify the optimal and near optimal solutions. Daylight and 
glare index were used as two visual comfort objectives for optimization and robustness 
of optimization results against shade behavior uncertainty that was analyzed using 
statistical analysis. Results show that near optimal solutions can be used instead of the 
optimal one since they provide more flexibility in seating positions while maintain-
ing almost the same visual comfort performance. And thus, the appropriate seating 
position considering occupants’ preference is 1.5m away from the external window 
with two view directions near parallel to the window for west-facing office rooms.

KEYWORDS
manual solar shades, occupant behavior, visual comfort, Multi-objective optimiza-
tion, seating position

1.  INTRODUCTION
Daylighting contributes significantly to occupant perceptions of well-being within buildings 
[1] as well as benefits, such as lighting energy savings [2] and a high productivity level due to 
increased visual comfort [3]. Thus, modern architecture favours buildings with large ratios of 
glazing to floor areas for admitting sufficient daylight into indoor spaces [4], which also brings 
negative impacts on indoor environmental quality such as glare problems and increased cooling 
demands [3]. To balance daylighting performance and glare protection, roller shades are widely 
used in glazed-office buildings in the hot summer and cold winter zone of China. The use of 
solar shades provides occupants with individual control over their own indoor comfort condi-
tions and thus reduces lighting and cooling/heating energy consumption [5].
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Daylight performance has been widely investigated by researchers. For example, Esquivias 
et al. [6] performed a daylight simulation of shading devices in an office building and different 
types of fixed shading were considered including overhangs, side fins, horizontal and vertical 
louvres. They concluded that that these fixed shading devices are not efficient in controlling 
dynamic daylight illuminance due to the excessive reduction in the daylight illuminance range 
of 500 and 2000 lux. Similar studies have been reported in the literature [7, 8]. Although auto-
mated solar shading systems have been used to improve the daylighting performance in many 
studies [3, 9, 10], Meerbeek et al. [11] reported there is a tendency that in the control mode 
with manual override capability occupants are more satisfied with the visual conditions than 
in the automated control mode.

Daylight glare protection is another important index for improving indoor visual comfort. 
Visual discomfort and glare rating assessment of integrated daylighting and electric lighting 
systems were investigated by Apiparn et al. [12]. An anidolic daylighting system combined 
with several electric lighting fixtures was measured and different glare rating indexes including 
daylight glare index (DGI), daylighting glare probability (DGP) and unified glare rating (UGR) 
were calculated by using high dynamic range (HDR) imaging techniques. Similar studies based 
on HDR measurement were conducted to evaluate indoor visual conditions and identify the 
source of discomfort glare [13–15].

Daylighting performance and/or glare protection have also been investigated along with 
indoor thermal and energy performance. For example, Lartigue et al. [16] conducted Multi-
objective optimization of the building envelope considering both energy consumption and day-
lighting performance. Different window to wall area ratios and window types were considered 
and the optimal non-dominated solutions were calculated using the Pareto method. Yao [17, 
18] measured and simulated the daylighting/glare and thermal performance before and after 
using roller solar shades in residential and office buildings. His research indicated that movable 
solar shades play a significant role in improving indoor thermal and visual conditions in the 
hot summer and cold winter zone of China.

Due to the dynamic nature of sky conditions, occupants’ shade control are complex and 
stochastic [5, 19, 20], and thus the indoor visual condition at different seating positions with 
different view directions varies with time during the year [21]. Therefore, the selection of 
appropriate seating positions and view directions for office buildings with manual shades will 
be a challenging task. To achieve a high indoor visual performance at a seating position during 
the whole year, there are generally three possible ways: (1) changing the way occupants behave 
(solar shade control behavior) to respond to external sky conditions efficiently since previous 
research studies show occupant behavior with solar shades is not efficient (e.g. forget to reopen 
solar shades for increasing indoor daylight levels when glare sources disappear) [22]; (2) use of 
automated shading systems for highly efficient control of solar shades to overcome the draw-
backs of occupants’ behavior as described above; (3) selecting appropriate seating positions and 
view directions based on occupants’ shade control behavior. Previous research has indicated that 
changing occupants’ behavior using strict control may decrease their tolerance for greater varia-
tion in indoor environmental conditions [23] and may negatively affect productivity. While for 
automated systems, Reinhart and Voss [24] found that in 88% of the cases when the blinds were 
lowered automatically, occupants manually raised them within 15 min, indicating automated 
systems do not satisfy users (partly due to the lack of understanding of occupants’ preference 
for daylight levels). Therefore, the last possible way (selecting appropriate seating positions and 
view directions based on occupants’ shade control behavior), which is less sensitive to occupant 
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behavior and does not require additional mechanical systems, will be a low cost and robust 
design strategy for achieving a high indoor visual condition. However, identifying appropriate 
seating positions and view directions is a complex and challenging task that involves balancing 
illuminance and glare since such factors are dynamic and depend on sun position, sky condi-
tions and occupants’ uncertainty over shade control, which means the identified solution should 
be robust to occupant behavior. Here robust means that there should be a converged solution 
(the optimal or near optimal solutions) for repeated shade behavior simulations whatever shade 
behavior changes given the same behavior model.

Although daylighting performance and glare risks of roller shades have been investigated in 
several research studies [15, 17, 25–27], most of them are based on automated or ideal control 
modes and neither of them are based on realistic occupant behavior with shades and over an 
annual simulation performance. For example, Kong et al. [28] measured and simulated the 
impact of interior design (seat position and view direction etc.) on visual discomfort reduction. 
They found that seating orientations towards windows and adjacent to windows lead to a higher 
rate of glare risks. However, the research was based on automated shading systems controlled 
by solar radiometers and photometric sensors and thus the conclusion may not be applicable 
to manually controlled shades. Recently, Bian et al. [29] proposed a discomfort glare evaluation 
method based on the concept of ‘adaptive zone’ through rotating view direction and shifting 
seating position. A simulation was conducted for bare windows and fixed shading devices 
(overhang shading and light shelf shading). They found that the introduction of the concept 
of ‘adaptive zone’ in visual comfort predictions significantly reduces both the degree and the 
occurring time of discomfort glare.

Most office buildings located in the hot summer and cold winter zone of China use manual 
roller shades due to its much lower cost compared to automated ones and thus there is a need 
to investigate the appropriate seating position and view direction based on occupants’ stochastic 
control of roller shades, rather than ideal control modes as described above. The current work is 
an extension of previous studies which focus on the evaluation of daylighting performance and 
glare risks at a fixed seating position [21, 30] and the focus is to identify the optimal and near 
optimal solutions for indoor seating position and view direction of west-facing office rooms in 
the hot summer and cold winter zone of China based on stochastic control of manual shades 
using Multi-objective optimization.

2.  METHODOLOGY

2.1  Shade Behavior Model
To investigate the impact of manual solar shades on indoor visual comfort, the stochastic 
model of manual solar shades developed in a previous study by the author [5] was used in this 
research. The model was constructed based on field measurements on an office building in the 
hot summer and cold winter zone of China. In this model, occupants’ shade control was divided 
into 5 solar shading states (shade window area of 0%, 25%, 50%, 75% and 100%, respectively, 
which means the occupant can adjust solar shades to any of these 5 positions randomly. Then, 
a first order and time-constant Markov chain method was used to develop the stochastic model 
of solar shade control, and the Markov chain transition matrix (the probability of solar shade 
changes from the current state to the next position) for different sky conditions were calculated 
and classified according to the determined driving factor (solar radiation). More detailed infor-
mation of this stochastic model can be found in paper [5]. This behavior model was created in 
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a building controls virtual test bed (BCVTB), a software environment developed by Lawrence 
Berkeley National Laboratory and allows expert users to couple different simulation programs 
[31], for co-simulation with EnergyPlus and a graphic illustration of this co-simulation frame-
work is shown in Figure 1. The co-simulation results (shade control action (SC values described 
in section 2.4.1) at each time step (each hour during the year)) were generated and used for 
simulation-based optimization.

2.2  Typical Office Cell
The research was conducted for a typical office cell (see Figure 2a) in Ningbo (a typical city 
in the hot summer and cold winter zone of China). Its dimension is 4 × 4 × 3m with a 3.8 × 
2.8m window on the west facade. The characteristics of the office cell are shown in Table 1. The 
material property of roller solar shades was collected from a local manufacturer.

2.3  Optimization Method

2.3.1  Optimization setting
To compare the indoor visual performance of manual solar shades at different seating positions 
and view directions, the combination of three design variables was considered. Table 2 shows 

FIGURE 1.  A graphic illustration of the co-simulation framework for the stochastic shade 
behavior model.
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the considered three design variables for optimization. The first variable is view direction at 
seating position, which mainly influences daylight glare protection. As can be seen in Figure 2b, 
there are a total of 24 directions considered with an interval of 15 degrees. Each direction cor-
responds to the middle of a roughly 60 degree view cone. The other two parameters are related 
to the location of the seating position (x and y values as can be seen in Table 2), and thus a two 
dimensional grid at workplane height was considered with a grid space of 0.5m (that meets 
the requirement of the Illuminating Engineering Society of North America (IESNA) 2012 
[32]), leading to a total of 49 (7 × 7) possible seating positions inside the office cell. Therefore, 
there were 1176 (49 × 24) possible design solutions to explore considering the combination of 
these three design variables. For comparison, a smaller grid of 0.1m spacing was simulated to 
validate the accuracy of the above grid size in identifying the optimal and near optimal solu-
tions. Although some of potential solutions might be pre-filtered for the studied office cell (e.g. 
a seating position of 0.5m from interior walls though staring at the wall is not desirable), this 
optimization technique is a general method for such kind of analysis and has its advantages for 
larger offices with more complex room geometry and facade design while a simple pre-filter 
technique cannot easily be applied to such cases.

In the current study, two objectives were set to identify the appropriate solutions. The first 
objective is related to daylighting performance and thus the useful daylight illuminance (UDI) 
index was used, which determines when illuminance levels are beneficial for the occupant, that 

TABLE 1.  Characteristics of the office cell.

Parameter Value

Location Ningbo city, latitude: 30°,longitude: 120°

Room orientation West

Dimension Room: 4 × 4 × 3m, Window: 3.8 × 2.8m

Window and shading device Clear double-pane window +manually controlled roller shades with 
visual transmittance: 0.2 (beam: 0.04, diffuse: 0.16), reflectance: 
0.7(Specular: 0; diffuse: 0.7); roughness:0.01;
Five shade positions: Percentage of shaded window area of 0%, 25%, 
50%, 75% and 100%

Surface reflectance Wall: 0.75, ceiling: 0.75, floor: 0.25

TABLE 2.  Design variables for optimization.

Parameter Values Number of options

Orientation (North Axis, degree) 0, 15, 30, 45, . . ., 345 24

X location (room depth, m) 0.5, 1, 1.5, 2, . . ., 3.5 7

Y location (room width, m) 0.5, 1, 1.5, 2, . . ., 3.5 7

Total options 1176
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is, more than 300 lx [33] (not too dark) and less than 2000 lx (not too bright) [34]. Too much 
daylight in the view field leads to glare risks. The other objective is related to glare protection 
and daylight glare index (DGI) [35] which was considered rather than daylight glare prob-
ability (DGP) since DGP cannot be predicted with the simulation engine described below. 
Optimization objectives are to minimize the time of DGI over 22 (22 is the maximum allowable 
DGI value for visual comfort [12]) and the time of UDI outside the range of 300–2000lux. 
The minimization of these two objectives leads to an optimal indoor visual comfort perfor-
mance—a maximum daylighting performance and a minimum glare risk. These two objec-
tive functions denoted as “UDI_unmet_time,” which corresponds to a maximum daylighting 
performance, and “DGI_unmet_time,” which corresponds to a minimum glare risk, can be 
expressed as follows:

min (UDI_unmet_time) and min (DGI_unmet_time)

where

	
UDI_unmet_time Pti( ) = H L Pti,j( )( )

j=1

8760

∑ 	 (1)

	
DGI_unmet_time Pti( )= K L Pti,j( )( )

j=1

8760

∑ 	 (2)

Where L(·) represents the simulation result, which is the output of the simulation for sampling 
point i (one of the 1176 possible options described in Table 2) and time j (within a year from 1 

FIGURE 2.  Possible seating positions and view directions.

 	
(a) 49 possible seating positions inside the office	 (b) 24 possible view directions
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to 8760). H(·) and K(·) are two functions that are calculated based on the daylight illuminance 
value and DGI value and can be expressed as follows:

	
H (x) = 0, if 300 ≤ x ≤ 2000

1, otherwise{ } 	 (3)

	
K (x) = 0, if x ≤ 22

1, otherwise{ } 	 (4)

When simulating UDI, a workplane height of 0.8m was considered, while for DGI a 
height of 1.2m (at seated occupants’ eye height level) was set in the simulation. In general, 
heating or cooling related thermal performance is not influenced by seating position and view 
direction. Thus, thermal related objectives are not considered. The optimal seating position 
and view direction depend on the dynamic usage of roller shades during the whole year, rather 
than just a time point or a short period of time. Consequently, the optimal solution will be 
identified based on the annual simulation results. In addition, near optimal solutions (solutions 
with the simulated two objective indexes being slightly higher than the optimal solution) will 
also be analyzed for providing occupants with both similar indoor visual performance to the 
optimal one and a flexibility of seating position and view direction. It should be noted that the 
influences of screen glare, view to outdoor and occupants’ shadow onto their own work are not 
considered since they cannot be simulated by EnergyPlus.

2.3.2  Optimization algorithm
Since occupant behavior with solar shades is stochastic, repeated simulations are required to 
capture performance uncertainty due to behavior uncertainty. The following analysis (see section 
3.1) has shown that 25 repeated simulations achieve a convergence of simulation results; there-
fore, a total of 1176 × 25 = 29400 simulations are required to identify the optimal and near 
optimal solutions. To reduce the simulation time, optimization analysis instead of a full para-
metric simulation was considered and the non-dominant sorting genetic algorithm (NSGA-II) 
[36] was used for Multi-objective optimization since it is a robust and versatile optimization 
algorithm [37]. The setting of this algorithm is that the max generation (the number of itera-
tions of the optimization) is 200; the population size (the number of solutions to be evaluated 
in each iteration) is 10; the crossover rate (how often the new solutions are created by merging 
features of existing solutions) is 1; the mutation rate (how often random changes happen to 
the new solutions) is 0.2; and the tournament selection size (new solutions in Evolutionary 
Algorithms are created from selected existing solutions) is 2. These settings are in line with the 
calibration of this tool with a full parametric study [38].

The optimization tool (jEPlus+EA), which uses the simulation engine EnergyPlus devel-
oped by the U.S. Department of Energy (DOE) [39] for building performance simulation, 
was adopted to conduct the above optimization analysis. jEPlus+EA is an open source tool 
originally developed for managing complex parametric simulations, which is coupled with 
optimization algorithms such as Evolutionary Algorithms (EA) [40]. It has been widely used 
for building performance optimization and calibration [38, 41, 42]. Since the optimization 
was based on annual indoor visual performance, typical weather year data for Ningbo city was 
used for hourly simulation.
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2.4  Robustness of Optimization Solutions

2.4.1  Uncertainty of occupant behavior
Due to the stochastic characteristics of occupant behavior, shade control varies between occu-
pants, and even the same occupant at the same environmental condition he/she may have 
different control actions at different times of year. Consequently, the shade behavior model 
as described in section 2.1 produces different shade control actions between repeated whole 
year simulations. Accounting for uncertainty of occupant behavior requires a certain number 
of repeated simulations to be conducted and compared for the relationship between each two 
replications. To assesses how well the relationship between two replications (here hourly shading 
coefficient (SC) values between different simulations were considered since SC directly related 
to the covering percentage of the window, e.g. a SC of 0.25 represents 75% of window area 
was covered by shades), the index correlation coefficient was considered, which varies between 
+1 and –1. A value of +1 indicates a perfect positive correlation between the two variables, –1 
represents a totally negative correlation and 0 corresponds to an absence of linear correlation. 
In general, a weak correlation of hourly SC values between repeated simulations indicates a 
relatively high uncertainty of occupant behavior. Since SC values are discrete and ordinal (SC 
values: 0, 0.25, 0.5, 0.75 and 1), Spearman rank correlation [43], a non-parametric test, was 
used for statistical calculation. The Spearman rank correlation test does not carry any assump-
tions about the distribution of the data and thus is appropriate for correlation analysis for SC 
values. It can be expressed as follows:

	
r =

cov rg sci ,rg scj( )
srg sci

srg scj

	 (5)

where cov(·) is the covariance of the rank variables (SC values: 0, 0.25, 0.5, 0.75 and 1) and 
σrgsci

, σrgscj
 are the standard deviations of the rank variables, and i, j are the number of repeated 

simulation described below.

2.4.2  Number of repeated simulations
Due to the uncertainty of shade behavior, different shade control actions based on the same 
shade behavior model (as described in section 2.1) should be considered to check the robust-
ness of the optimization results. Different shade control actions can be generated by repeated 
co-simulation of the stochastic behavior model described in Figure 1. To determine the minimal 
number of repeated simulation, the graphical method, a simple graphical approach that plots 
the cumulative mean of the simulation output data, suggested by [44] was used. After sufficient 
replications, the graph will become a flat line with no upward or downward trend. The number 
of replications required is defined by the point at which the line becomes flat.

2.5  Comparison with Simplified Shade Control Modes
Due to complexity of modeling shade control behavior in annual building performance simula-
tion, manual solar shades are mainly treated as automated systems or simplified control modes 
in building performance simulation without considering the stochastic characteristics of occu-
pant behavior. For example, in research by Tzempelikos et al. [45], solar shades were automati-
cally closed if external solar radiation exceeds 120 W/m2. While Reinhart [46] assumed that 
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solar blinds were closed if solar radiation on the façade exceeds 50 W/m2. Sometimes, manual 
shades are even treated as fully open or fully closed in performance simulations neglecting their 
dynamic nature in controlling solar radiation. These rigid and fixed thresholds cannot reflect 
the stochastic nature of occupant behavior and may lead to a biased evaluation of indoor visual 
performance, seating positions and view directions. Therefore, the appropriate seating positions 
and view directions identified based on a shade behavior model were compared with two typical 
automated shade controls (the two fixed solar radiation thresholds described above: 50 W/m2 
and 120 W/m2) and with two simple control modes (fully open and fully closed for the whole 
year respectively) in order to determine their capabilities of identifying the optimal and near 
optimal solutions as the behavior model. Although a limited number of studies reported shade 
behavior models [47, 48], these models cannot be applied directly to a hot summer and cold 
winter zone of China due to the difference in climate characteristics, shade control modes and 
shading materials etc. Thus, these manual control models are not compared in this research.

3.  RESULTS AND DISCUSSION

3.1  Behavior Uncertainty
Figure 3 presents Spearman correlation coefficient of annual hourly SC values between the 
25 replications. The areas of circles shown in this figure represent the absolute values of corre-
sponding correlation coefficients. The larger the areas of circles are, the stronger the correlation 
between replications. It can be seen that on the principal diagonal the areas of circles are the 

FIGURE 3.  Spearman correlation coefficient of annual hourly SC values between the 25 
replications (N1 . . . N25 represent replication1 . . . replication25).
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largest with a Spearman correlation coefficient of 1, which is due to the fact that the calcula-
tion is based on the same SC value sequence (such as N1 vs. N1). However, the correlation 
coefficients for other situations (off diagonal elements) are close to 0 with only a few values 
reaching about 0.1/–0.1. In statistics, a correlation coefficient in the range of [–0.19, 0.19] 
indicates no or a very weak relationship [49]. Therefore, Figure 3 shows that there is no or a 
very poor relationship between 25 replications of occupant behavior in terms of hourly SC 
value sequence, indicating occupant uncertainty was not suppressed by the behavior model. 
Figure 4 further gives annual average SC values between the 25 replications, which range from 
about 0.43 to 0.53, indicating behavior uncertainty can be produced on an annual basis by the 
shade behavior model and thus indoor visual performance uncertainty should be considered 
in the following analysis.

To determine how many simulation replications are needed to reduce performance uncer-
tainty due to behavior uncertainty, the graphical method described in section 2.4.2 was used 
to check the convergence of UDI unmet time (the optimal solutions for different replications 
all have the same DGI unmet time of 0 as shown in the following analysis and thus there is no 
need to do a convergence check for this index) and the result is shown in Figure 5. It can be seen 
from the figure that the results converge at about 20 replications with a 95% confidence interval. 
Performing more replications beyond this point will only give a marginal improvement in the 
estimation of the mean value. Meanwhile, the maximum difference of the confidence interval 
is only 0.67% after 25 replications, a very small value (means a high accuracy) for daylighting 
prediction and thus 25 replications were selected for the following uncertainty analysis.

3.2  Optimization Result
Figure 6 presents Multi-objective optimization results for the shade behavior model for one 
of the 25 replications with red points indicating the optimal solutions, which have both the 

FIGURE 4.  Annual average SC values between the 25 replications.
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minimal DGI unmet time and minimal UDI unmet time. It can be seen that for different 
combinations of the three design variables both DGI unmet time and UDI unmet time vary 
significantly, indicating a large performance deviation between different solutions. For example, 
the DGI unmet time ranges from 0 to about 3500 hr while the UDI unmet time ranges from 
about 6100 to about 7300 hr. Through optimization, the optimal solutions have been identified 

FIGURE 5.  Convergence of UDI unmet time prediction. The solid line indicates the mean value 
while the dashed lines indicate the 95% confidence interval.

FIGURE 6.  Multi-objective optimization results for the shade behavior model. (The scatter 
plot shows all of the explored solutions for one of the 25 replications, with those in the current 
population (blue) and the current optimal solutions (red) marked.).
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with the minimal DGI unmet time being 0 hr and the minimal UDI unmet time being 6141 
hr, corresponding to 2169 working hours (8760h in a year and thus 8760 – 6141 = 2619) 
meeting UDI criterion (2619/3650 = 71.7% of working time which assumes 10 hr per day 
(365day × 10h = 3650)).

Figure 7 shows the convergence line for the above optimization problem, and it can be 
seen that after 40 generations (less than the setting: 200 generations) the best solutions have 
been identified. To further validate the reliability of optimization results, a parametric analysis 
of the simulation replication was conducted and all possible combinations (the whole searching 
space, 1176 simulations are described in Table 2) were simulated and the same optimal solutions 
were identified as the optimization method. Therefore, the optimization algorithm is capable 
of identifying the true optimal solutions.

In addition, the influence of the size of grid spacing on the optimal solution was analyzed 
using a new optimization with a smaller grid space of 0.1m, leading to a total of 1444 (38 × 38) 
possible seating positions. The results show that the difference of optimal seating position is only 
0.2m, indicating an acceptable level of accuracy of the above analysis (the grid size of 0.5m).

3.3  Robustness of the Best Solutions
The best solutions for the 25 simulation replications according to Multi-objective optimization 
are illustrated in Figure 8. It can be seen that there are only two best seating points for the 25 

FIGURE 7.  Convergence line for the optimization problem for the replication illustrated in 
Figure 6.
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replications with the x,y locations of (1.5m, 0.5m) or (2.0m, 0.5m). For the best view direction 
shown in Figure 8(b), all 25 replications have the same optimization result of 11 view directions 
ranging from 30 to 180 degrees. Other points or view directions all lead to a poorer performance 
in terms of daylighting and glare protection. Since these 11 best solutions have continuous 
viewing angles, the best view direction can be considered any angle in the range of 30 to 180 
degrees. Although there are two best seating positions rather than one, most solutions (20/25 
× 100% = 80%) suggest the location of (1.5m, 0.5m) with the same view directions and the 
difference between the two points is small. Therefore, this position (1.5m, 0.5m) with a view 
direction of ranging from 30 to 180 degrees (from the direction of northeast to south) can be 
considered the best solution in terms of daylighting and glare protection with high robustness 
against occupant behavior uncertainty.

In addition to the optimal seating location and view direction, the uncertainty of UDI 
unmet time and DGI unmet time was also analyzed to determine how robust these optimal 
solutions are. Figure 9 illustrates a normal probability plot of UDI unmet time for the 25 simu-
lation replications. It can be seen that the data points are near the red straight line (a theoreti-
cal normal distribution), indicating the normality of the data which was further validated by 
using a rigorous statistical test (Kolmogorov-Smirnov test). Therefore, the two parameters (the 
mean value = 6168 hr and standard deviation = 32 hr) were obtained through fitting normal 
distribution to the data points. For uncertainty analysis, the 95% confidence interval was used 
and the corresponding uncertainty range is [6104, 6232] hr, which is a very narrow range and 
thus the UDI performance is robust. While for DGI unmet time, these 25 optimization results 

FIGURE 8.  The optimal solutions with seating position and view directions for the 25 
replications.

�

(a) Optimal seating positions (the red points show the 
locations of the seating position) and view directions 
(blue region which is enlarged and presented below)

(b) 11 optimal view directions
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are all 0, indicating a more robust performance than UDI. Therefore, the visual performance 
of the optimal solutions is robust and not sensitive to occupant uncertainty of shade control.

3.4  Comparison

3.4.1  The optimal solution
The four simplified shade controls were simulated and optimization results as well as a com-
parison with the behavior model are listed in Table 3 and Figure 10. It can be seen that for the 
optimal solution and the fully open mode the optimal position is close to the behavior model 
with a difference of 0.5–1.0m on the x axis and the best view directions are the same as the 
behavior model. The solar threshold 50W/m2 is also close to the behavior model but with the 
best seating position closer to the window due to the use of solar shades when solar intensity 
exceeds 50W/m2.

On the other hand, for the fully closed mode, the best seating position (near the middle of 
the room) is far (about 2m away) from the behavior model and a small deviation (15 degrees) 
of the range of optimal view directions. For the control mode of solar threshold 120W/m2, 
the optimal solution is in the middle of the office cell plane, which is far (about 1.4m away) 
from the low solar intensity mode (50W/m2) and (about 1.6m away) from the behavior model. 
Meanwhile, there is a very small difference (about 15 degrees) for the optimal view direction 
compared to the behavior model.

Beside the optimal solution, UDI unmet time of the behavior model is much higher 
than the other shade control modes with a deviation of 2.7–17.2%. That means currently 
used shade control modes in building performance simulation may overestimate the UDI per-
formance if UDI was simulated at the optimal seating position. While for DGI unmet time, 
these four control modes have the same optimization result (0 hr) as the behavior model. This 
is because the view directions are mainly away from the external window for all of these shade 
control modes.

FIGURE 9.  Normal probability plot of UDI unmet time for the 25 simulation replications.
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Therefore, selecting the optimal seating position and view direction for manual controlled 
solar shades based on the modes of fully closed and solar threshold 120W/m2 leads to a discrep-
ancy while the choices based on fully open and solar threshold 50W/m2 seems to be acceptable 
although a little difference may exist (UDI performance may be overestimated by 6.6% or 
13.9% depending on the choice of selected shade control mode).

A clear conclusion that can be drawn from the optimization is that the optimal view 
direction is away from the window. It also can be seen that all of these optimal solutions are 
at the middle region of the office cell and near the south façade. That means a relatively small 
seating region inside a typical office cell, where optimal visual comfort is achieved, can be rec-
ommended for typical solar shade control systems. However, the above analysis also indicates 
that different control modes of solar shades lead to different optimal seating positions and view 
directions, which means there is a need to carefully select seating positions if a highest visual 
comfort condition is required.

3.4.2  Near optimal solutions
The above analysis of the optimal solution focused on the best single point. However, it seems 
that there are still a few points near the optimal solution as can be seen in Figure 6 (a few grey 
points near the red point which are near optimal solutions), indicating a similar or a little 
poorer performance which may also be acceptable. Therefore, further investigation of the map 
of UDI unmet time distribution for different control modes was conducted and the results 
are shown in Figure 11 (sub-figures do not have values at one or two points (Figure 11(a) and 
(e)) is due to the sampling technique used by the NSGA-II optimization algorithm and this 
does not influence the searching of optimal and near optimal solutions by the algorithm). It 
can be seen that for the behavior model there are a few near optimal solutions at the location 

TABLE 3.  Comparison of different shade control modes with the behavior model in terms of 
optimal solutions as well as the minimal values of corresponding objectives.

Shade control mode

Behavior model
Fully 
open

Fully 
closed

Solar 
threshold: 
50W/m2

Solar 
threshold: 
120W/m2

Optimal seating position 
[m]

80% probability: 
(1.5, 0.5)
20% probability: 
(2.0, 0.5)

(2.5, 0.5) (1.0, 2.0) (1.0, 1.0) (2.0, 2.0)

Optimal view direction 
[degree]

30–180 30–180 15–165 30–180 15–150

UDI unmet time [hr] 95% CI: [6104, 6232] 5759 6000 5309 5108

DGI unmet time [hr] 0 0 0 0 0

Deviation of UDI unmet 
time from behavior model

0 6.6% 2.7% 13.9% 17.2%

Note: the optimal seating position is expressed in terms of x, y location
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of about x = 1.5–2m and y from 0.5 to 3.5m (here x and y are the axes illustrated in Figure 8 
which represent the room depth and room width respectively) with a maximum difference of 
UDI unmet time of 3.9%.

While for the view direction, a range of about 15 to 165 degrees (a deviation of about 
15 degrees compared to the optimal solution) lead to a DGI unmet time of 0. Therefore, near 
optimal solutions have a relatively small performance difference compared with the single 
optimal solution, indicating that these near optimal solutions can be adopted in order to provide 
occupants with a flexibility of seating position (more seating positions compared to the optimal 
one) while maintaining approximately the same level of indoor visual performance. In addition, 
near optimal solutions for the 25 replications almost have the same seating region and view 
directions (see Figure 12), indicating a robust performance of these solutions against behavior 
uncertainty. Therefore, the appropriate seating positions (1.5–2m away from the window) and 
view directions (15 to 165 degrees, from the direction of northeast to southeast) for the west 
facade based on the above analysis can be determined according to near optimal solutions which 
are given in Figure 12. In reality, most occupants prefer to sit near windows with an outside 
view in the view field and thus a reasonable and practical solution according to Figure 12 would 
be seating positions in the blue rectangle with two view directions marked with red arrows (15 
and 165 degrees in Figure 12). These two view directions are suggested since they are nearly 

FIGURE10.  Comparison of different shade control modes with the behavior model in terms 
of optimal solutions (the red point shows the location of the seating position and blue regions 
represent view directions).
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FIGURE 11.  Map of UDI unmet time distribution for different control modes.

�
(a) fully closed mode	 (b) fully open mode

�
(c) solar threshold 50 W/m2	 (d) solar threshold 120 W/m2

(e) one of the simulation replication of the behavior model
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parallel to the window (occupants do not face the back wall) and thus occupants can easily have 
a view to the outdoors by adjusting a small amount of view direction. In addition, these two 
view directions help reduce the likelihood of veiling glare on a computer monitor which does 
not face the window. Therefore, the seating positions about 1.5m away from windows with two 
view directions near parallel to the window are practically optimal for most occupants.

Interestingly, it is found in Figure 12 that the near optimal solutions are symmetric. This is 
mainly due to the fact that the two shades were adjusted according to the same stochastic model 
and the annual trend of adjustment of these two shades is similar although large differences 
exist at hourly scales. Therefore, the annual daylighting and glare performance at these points 
are similar and consequently, symmetrically near optimal solutions are identified.

Although the deviation (see section 3.4.1) of UDI unmet time from the behavior model 
for solar threshold 120W/m2 is higher than the other modes in terms of the single optimal solu-
tion, this difference does not necessarily indicate that the identified near optimal solutions are 
also farther from the behavior model than the other three simplified modes. Instead, it can be 
seen that for these simplified shade control modes only solar threshold 120W/m2 has a similar 
curved surface of the UDI unmet time distribution, indicating that they have similar are near 
optimal solutions (seating positions). In addition, the aim of the above comparison is to check 
the effectiveness of these simplified shade control modes in identifying appropriate seating posi-
tions and view directions as the shade behavior model rather than finding a simplified mode that 
has a minimal UDI unmet time difference compared to the shade behavior model. Therefore, 
the solar threshold 120W/m2 mode can be considered to represent the shade behavior model 

FIGURE 12.  Appropriate seating positions and view directions (points inside the red rectangle 
indicate near optimal seating positions with each point having the same view direction ranging 
from 15 to 165 degrees).
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for selecting appropriate seating positions and view directions. This means that using simplified 
shade control modes for identifying suitable seating positions and view directions is not an easy 
task and requires a careful selection of appropriate simplified control modes.

As can be seen from Figure 12, near optimal solutions provide more choices of seating 
positions compared to the single optimal solution and thus are more likely to be accepted by 
occupants with different preferences for seating positions. Meanwhile, the visual performance 
of near optimal solutions is almost as high as the optimal one and thus in some cases they can 
be considered as the best solutions since occupants’ adaptation to visual conditions can extend 
the limit of comfort range of UDI and glare indexes. This research is useful for interior design 
(such as the layout of office tables) of glazing office buildings in China and its findings can 
help designers avoid inappropriate seating positions. In addition, the proposed methodology 
is general and can be used in other cases with any window size at any location and orientation.

4.  CONCLUSIONS
Manual solar shades are widely used in office buildings in China due to their lower costs com-
pared to automated ones. The performance of such kind of shades highly depends on occupant 
behavior, which is complex and stochastic. Thus, performance prediction based on simulation 
using simple assumptions may deviate from actual performance and lead to a wrong decision 
in selecting appropriate furniture layout. This research investigates occupants’ optimal and near 
optimal seating position and view direction in a west-facing office cell based on the behavior 
model on solar shades developed by the author and NSGA-II algorithm based Multi-objective 
optimization was used to identify the optimal solution. Four simplified solar shade control 
modes (two based on solar threshold and the other two are fully open and fully closed respec-
tively) were compared to determine their effectiveness of identifying optimal and near optimal 
solutions in representing the behavior model.

Results show that the appropriate seating position can be determined using near optimal 
solutions and its location is 1.5m away from the external window with two view directions near 
parallel to the window (occupants do not face the back wall) and thus is capable of having a view 
outside. Although the solar threshold 120W/m2 mode is a little poorer than other control modes 
with regard to the single optimal solution, near optimal solutions of this mode are closer to the 
behavior model compared to other modes and thus this mode is more likely to be accepted by 
occupants since near optimal solutions provide more flexibility in seating positions without a 
significant reduction of indoor visual comfort. Therefore, a solar threshold of 120W/m2 can be 
considered to represent the behavior model for selecting appropriate seating position and view 
direction. Since the current research only considered four simplified shade control modes, other 
control modes may have a better performance than the solar threshold 120W/m2 for represent-
ing shade control behavior and this needs to be further investigated.

The findings of this research are based on the shade behavior model developed in the hot 
summer and cold winter zone of China and thus its applicability to other climate regions or 
different window sizes/orientations may be limited. Meanwhile, it should be noted that the 
appropriate seating positions and view directions suggested for the west facade are based on the 
two (UDI and DGI) selected visual related indexes and may be building specific (such as ratios 
of glazing to wall areas and physical properties of solar shades). However, the methodology used 
in this research is general and can be applied to other similar studies with any window size at 
any location and orientation.
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This research is based on optimization of objective visual comfort indexes, occupants’ sub-
jective perception of indoor visual comfort and other psychological and physiological factors are 
not considered such as view (which is a very important factor in selecting seating position and 
view direction), user preferences (e.g. solutions for different users—one who likes more view and 
will tolerate more glare; one for a user that wants even lighting and is mainly working on paper 
etc.) and multiple occupants in open-plan offices with different preferences. Therefore, further 
research is required to conduct more detailed investigation by including not only objective and 
quantitative indexes but also occupants’ subjective and qualitative factors. Meanwhile, future 
simulation studies and field measurements are required to further compare the effectiveness of 
controlling daylight levels and glare protection of manual shades with other passive and active 
solutions in order to provide improvement suggestions on manual shade control as well as design 
strategies for shading devices.
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