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ABSTRACT
Predicting resource consumption in the built environment and its associated environ-
mental consequences is one of the core challenges facing policy-makers and planners 
seeking to increase the sustainability of urban areas. The study of land-use change has 
many implications for infrastructure design, resource allocation, and urban metabo-
lism simulation. While most urban models focus on horizontal growth patterns, few 
investigate the impacts of vertical characteristics of urbanscapes in predicting land-
use changes. In this paper, Building-form variables are introduced as a new deter-
minant factor for investigating effects of vertical characteristics of an urbanscape in 
predicting land-use change. This work outlines an automated method for generating 
building-form variables from Light Detection and Ranging (LIDAR) data by using 
Density-Based Spatial Clustering and normal equations. This paper presents a Land-
Use Model that uses Remote Sensing, GIS, and Artificial Neural Networks (ANNs) 
to predict urban growth patterns within the IUMAT framework (Integrated Urban 
Metabolism Analysis Tool), which is an analytical platform for quantifying the overall 
sustainability in the urbanscape. The town of Amherst in Western Massachusetts (for 
the period of 1971–2005) is used as a case study for testing the model. By isolating 
the weights of each explanatory variable in models, this study highlights the influence 
of building geometry on future development scenarios.
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1.  INTRODUCTION
Mountain snowpack declination (Mote et al., 2005), unprecedented drought in California 
(Mann & Gleick, 2015), and Atlantic hurricane trends (Mann & Emanuel, 2006) are some 
examples of the changing climate. The U.N. Climate Chief has stated “This transformation is 
unstoppable” (UN releases draft agreement on climate change, 2015). Human activities and 
rapid urbanization are two major sources of GHG emissions (International Energy Agency, 
2008, Grimm et al., 2008). While the world population living in urban or suburban areas is 
expected to grow 25 percent between 2011 and 2050 (Crossette et al., 2011), more studies 
provide evidence highlighting strong associations between land-use change and climate change 
(Melton et al., 2016, Heald & Spracklen, 2015, Pielke et al., 2002). Planners develop policies 
for minimizing environmental impacts of land-use change like air pollution (Mage et al., 1996), 
waste (Kennedy et al., 2009), and soil erosion (Chen, 2007) in urban and suburban districts. 
However, understanding the processes and parameters involved in land-use transition remains 
one of the most challenging tasks in the planning community. To address this issue, planners 
have employed advanced methods such as Cellular Automata and Artificial Neural Networks 
to capture land-use change. Land-use models improve our perception of the causes and con-
sequences of existing spatial patterns, and the extent of future changes (Verburg et al., 2004).

2.  LITERATURE REVIEW

2.1  Existing Land-use Models and Modeling Approaches
Early land-use models with deterministic approaches concentrated solely on deforestation mod-
eling (Lambin, 1997). More recent methods implement dynamic methods to simulate complex 
land cover changes such as urbanization (Carrero et al., 2014). Land-use and urban models can 
be categorized based on modeling approaches: spatial approaches, dynamics of time and scale, 
and planning applications (Silva & Wu, 2012). These models investigate the interaction of 
involved parameters at a micro scale (e.g. TLUMIP (Weidner et al., 2009), UrbanSim (Waddell 
et al., 2003), ILUMASS (Wagner & Wegener, 2007)), or a macro scale (e.g. LTM (Pijanowski 
et al., 2002)), or at multiple scales (e.g. WiVsim (Spahn and Lenz, 2007). Land-use changes 
and urban growth models in the long term (e.g. FEARLUS, Cioffi-Revilla & Gotts, 2003), 
medium term (e.g. CLUE-S (Verburg et al., 2002), or short term are developed for different 
planning tasks (Silva & Wu, 2012).

Cellular Automata (CA) based models (e.g. SLEUTH (Jantz et al., 2010), iCity (Stevens 
et al., 2007), Metronamica (van Delden et al., 2005), Agent-Based Models (e.g. STAU-Wien 
(Loibl & Toetzer, 2003), SIMPOP (Sanders et al., 1997), Genetic Algorithms (Tseng et al., 
2008), and Artificial Neural Networks (e.g. ART-MMAP (Liu & Seto, 2008; Omrani et al., 
2012; Pijanowski et al., 2014) offer intelligent approaches to modeling land-use changes. CA 
models and Agent-Based Models work with spatial data while other methods need to be inte-
grated with other spatial techniques (Carrero et al., 2014). CA is used for capturing the long 
term conversion of non-urban to urban land in urban growth models. In this dynamic discrete 
modeling technique, each cell responds to the same set of rules based on states of neighbor-
ing cells while ignoring the global spatial context and characteristics of the built environment 
(Vanegas et al., 2010). In contrast to CA, the interaction between agents in an urban context is 
included in Agent-Based Models. The latter method still applies simple behavioral rules influ-
enced by localized context, similar to CA models, but there are limited attempts for validating 
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models by observed data (Vanegas et al., 2010). Genetic Algorithms is a method used to generate 
and optimize a set of parameters for complex problems with high levels of uncertainty (Jenerette 
& Wu, 2001); however, the logic behind the rules is difficult to parse (Tseng et al., 2008).

Similar to Genetic Algorithms, Artificial Neural Networks (ANNs) apply “machines with 
the mathematical logic capacity of human neural systems” to solve sophisticated problems such 
as land-use changes and urban growth (Basse et al., 2014). ANNs are interconnected networks 
of neurons comprised of input, output, and hidden layers. Interrelational weights between nodes 
are updated by implementing different algorithms and an internal transfer function (Aisa et 
al., 2008). Users are responsible for defining the number of hidden layers, regularization value, 
learning rate, learning iteration numbers, and data encoding techniques (Tseng et al., 2008).

ANNs, with the aid of spatial analysis methods, are capable of simulating land-use and 
urban changes by integrating the variety of environmental, social, and political variables. For 
example, in ART-MMAP, Liu & Seto (2008) predict urban growth by learning from past trends 
and regularized weights of socioeconomic variables. Tayyebi et al. (2011) use an ANNs-based 
model for predicting urban growth boundaries, based on variables such as built areas, accessibil-
ity to roads, green areas, and service stations. Maithani (2009) proposed coupling ANNs with 
GIS and remote sensing measurements for generating site variables and reducing subjectivity 
in urban growth modeling. The non-parametric characteristic of ANNs models may be con-
sidered an alternative to estimating land-use transition probabilities in CA simulation models 
(Almeida et al., 2008). Unlike common statistical methods, ANNs do not make assumptions 
about the data distribution and can reduce the subjectivity in modeling complex phenomena 
such as urban growth where there is high nonlinearity between variables (Maithani, 2009). 
ANNs also perform better in predicting land-use classes change compared to other well-known 
non-linear models like Classification and Regression Trees (CART) and Multivariate Adaptive 
Regression Splines (Tayyebi & Pijanowski, 2014). Integration of Multiple Neural Networks in 
urban growth models could improve the modeling accuracy and enhance modeling capacity in 
capturing spatial heterogeneity (Wang & Mountrakis, 2011). However, calibration and valida-
tion of ANNs models remains a challenge (Basse et al., 2014). Although Triantakonstantis & 
Mountrakis (2012) believe there is no need for multicollinearity and spatial correlation assump-
tion in ANNs analysis, others like Garg and Tai (2012) assume that ANNs models cannot 
automatically deal with data interrelationships in training data. One of the main weakness is 
the “black box” behavior of ANNs models where users cannot specifically extract rules or con-
clusions from the learning process (Triantakonstantis & Mountrakis, 2012).

The integration of land-use vector data and urban form in urban simulation may improve 
our understanding of human behavior (Silva & Wu, 2012) in different areas such as trans-
portation and travel behavior (Chao & Qing, 2011; Ewing & Cervero, 2001; Newman & 
Kenworthy, 2006; Cervero & Gorham, 2009), accessibility (Handy & Clifton, 2001), energy 
use (Ewing & Rong, 2008), life cycle analysis (Norman et al., 2006), ecological assessments 
(Bereitschaft & Debbage, 2013), and environmental impacts (Anderson et al., 1996; Ellis, 2002; 
Ewing & Rong, 2008; Frey, 2003; Gordon & Richardson, 1997; Newton, 2000; Williams., 
2011). These studies confirm that the integration of a comprehensive set of land-use and urban 
form variables (e.g. Hamidi et al., 2015; Chao & Qing, 2011) improve prediction of complex 
problems, and even provide results that contradict conventional wisdom. For example, Glaeser 
and Kahn (2010) found that more restrictive land-use regulations increase urban GHG emis-
sions by promoting new developments in the periphery of cities. Urban form variables such 
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as concentration, dispersal, mixed use (Buxton, 2000; Newton et al., 2000), urban continuity 
(Bechle et al., 2011), centrality, compactness index, and open space ratio (Huang et al., 2007), 
in combination with urban sprawl index (Lopez and Hynes, 2003; Sutton, 2003) are also used 
in analyzing the metabolic performance of cities. For example, Bereitschaft and Debbage (2013) 
study the relation between urban continuity and shape complexity indices with air pollution. 
These indices are also integrated into landscape metrics for exploring evolutions of land-use and 
urban growth (Ji et. al, 2006; Luck & Wu, 2002). In other studies, multi-dimensional sprawl 
indices (Hamidi et al., 2015, Ewing et al., 2003) integrated with socioeconomic variables and 
urban form indices are applied for measuring transportation.

Urban and building-form indices play an essential role in modeling human behavior and 
urban systems. Three-dimensional urban geography research performs better when compared 
to two-dimensional analysis in capturing the complexity of the built environment (Thill et al., 
2011). Researchers investigate the effects of a building’s height on different areas such as heat 
island, rainwater runoff, pollution, and habitability (Lin et al., 2014). For example, building 
height influences the rainfall run-off process in an urban environment. Integration of building 
heights in urban hydrological models enhances modeling capacity for capturing the run-off 
and plays a significant role in stormwater management (Isidoro & Lima, 2014). Combined 
with other morphological properties of buildings, such as roof area and compactness, building 
height is used to extract urban land-use categories (Barnsley et al., 2003). The vertical aspect 
of the urbanscape influences parameters such as humidity, wind direction and speed, and solar 
radiation; these effects create different microclimates and impact thermal comfort within urban 
districts (Palme & Ramírez, 2013). In addition to thermal implications, building heights are 
critical in analyzing visual and acoustical effects of urbanscape. Ko et al. (2011) evaluated 
impacts of building heights on road traffic noise for identifying areas with excessive environ-
mental noise. Moreover, the vertical growth of urbanscapes significantly influences “livability” 
in urbanscapes (Lin et al., 2014). A comprehensive 3D geospatial database of an urbanscape 
not only is a valuable resource for analyzing different aspects of urban systems, but also is useful 
during emergencies by reducing the response time on multi-level structures (Lee & Zlatanova, 
2008; Kwan & Lee, 2005).

2.1  Research questions and Paper structure
Integrating buildings geometric information in land use models is a challenging task. Lack 
of sufficient databases and advanced methodologies could be among the reasons for the gap 
in the existing literature. While most urban models focus on horizontal growth patterns, few 
investigate the impacts of vertical characteristics of the urbanscape into predicting land-use 
changes. In this study, we explore the use of building-form indices extracted from LIDAR data 
in land-use modeling. This approach is integrated into the IUMAT Land-Use Model (IUMAT-
LUM). The IUMAT, Integrated Urban Metabolism Analysis Tool, is an analytical platform for 
quantifying the overall sustainability in the urbanscape (Mostafavi et al., 2014). IUMAT-LUM 
with an ANNs simulation platform models urban growth and future development patterns.

In contrast to environmental, physical, institutional, and cultural data, many planning and 
design agencies do not have the resources or knowledge to develop a comprehensive vectorized 
database of urban and building geometry. LIDAR data, which is the 3-dimensional measure-
ment of the built environment, is a valuable resource for creating building-form parameters. 
Parameterization of roof shape provides enough information about most of the architectural 
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characteristics of a building such as geometric prototype, footprints, site coverage, courtyard 
ratio, the number of floors, height, and building orientations. Therefore, building-form is 
identified as roof shape in this study.

Our research introduces an automated method for generating building-form variables 
from LIDAR measurements. The main research questions are as follows:

1.	 How can Light Detection and Ranging data (LIDAR) be transformed into a determi-
nant factor (building-form indices) in land-use modeling?

2.	 Do building-form indices in combination with other spatial explanatory variables 
improve the predictive power of land-use modeling?

The remainder of this paper is organized into three sections. Section 3 on Research Methods 
outlines approaches for generating building geometric variables from LIDAR measurements 
and other explanatory variables from GIS vectorized databases. It summarizes the structure of 
an IUMAT-LUM simulator. Section 4 (Results and Discussion) describes the study area and 
databases used in this study. We explain the implementation of the proposed IUMAT-LUM 
framework to the town of Amherst. The impacts of the buildings’ geometric information in 
predicting changes in the pattern of the built environment are also explored. In the final and 
concluding section (5), we discuss the potential for IUMAT-LUM to integrate into other urban 
metabolism and land-use policy studies.

3.  RESEARCH METHODS

3.1  IUMAT-LUM framework
Land-use models are used to investigate the relationships between socioeconomic character-
istics and the built environment in order to analyze and predict land-use change. In addition 
to physical, institutional, cultural, and environmental parameters commonly studied, in the 
IUMAT-LUM, building and urban form are used as new determinant factors for modeling 
land-use change. We investigate the influence of building-form indices extracted from LIDAR 
measurements on patterns of new developments. The three main components of the IUMAT-
LUM framework are the Building-Form Generator, the Spatial Variables Generator, and the 
Simulator (Figures 1 and 6). The Building-Form Generator applies different algorithms for 
extracting building-form variables from LIDAR data. The Spatial Variables Generator compiles 
these variables and GIS vector data into a spatial grid system and employs spatial functions 
for calculating density, proximity, and land cover estimates. Generated explanatory variables 
are split into training, calibration, and test data for training and calibrating the model in the 
Simulator. And finally, the simulator applies optimized ANNs training weights for predicting 
land-use changes in an urban block. The algorithms of IUMAT-LUM are written in Python to 
generate, process, and analyze the data.

3.2  Building-Form Generator
The Building-Form Generator in the IUMAT-LUM (Figure 1) generates a vectorized database 
about the architectural characteristics of buildings such as geometric prototype, footprint, site 
coverage, mass to space ratio, the number of floors, height, and building orientations. The 
building-form complexity index and Building height variables are extracted from LIDAR data, 
processed in Spatial Variables Generator and the IUMAT-LUM simulation platform.
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Airborne LIDAR is a remote survey technology, which generates 3D points with coordi-
nates (x and y) and elevation information (z) about the natural and built environment without 
any projection and shadow distortions (Yan et al., 2015). Compared to aerial and satellite 
images, LIDAR data is more useful for extracting building 3D models especially when dealing 
with large sets of objects (Zhang et al., 2006). Building and urban 3D models have many appli-
cations in planning and urban design such as measuring energy performance, creating virtual 
urban models, and assessing urban heat island (Jensen, 2009). For the last decade, researchers 
have developed several algorithms for converting LIDAR data to building 3D models at the 
urban scale (Grammatikopoulos et al., 2015; Yan et al., 2015; Palmer & Shan, 2005; You et al., 
2003). Schwalbe et al. (2005) categorized these algorithms into model-driven and data-driven 
methods. Data-driven algorithms identify planes in cloud points or combine LIDAR measure-
ments with other data sources like imagery to extract building 3D models, while in model-
driven approaches, limited predefined geometry models are fitted to the LIDAR measurements.

The Building-Form Generator integrates a model-driven approach and employs five steps 
towards converting LIDAR measurements to building-form variables. In the first step, the 
Building Clusters Detector applies a Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) algorithm introduced by Ester et al. (1996). LIDAR points provided by 
public agencies can have a classification type such as ground, low vegetation, or building assigned 
to it, which define the type of object represented by that point. The Clusters Detector selects 
LIDAR points in the building class within an urban block, classifies points with higher density 
together as buildings, and sets low-density regions as outliers. The DBSCAN algorithm is suit-
able for detecting arbitrary shapes with high efficiency on large databases without specifying 
numbers of clusters for the algorithm. The Cluster Detector uses the DBSCAN algorithm in 
Python Scikit-learn library. Users are responsible for adjusting min-samples and eps parameters, 

FIGURE 1.  Conceptual framework of IUMAT-LUM data preparation process.
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	 Journal of Green Building� 9

which define the minimum density of points in clusters (of buildings). The min-sample speci-
fies the minimum number of points in a region and the eps parameter represents the maximum 
distance allowed by the algorithm between points in each cluster.

If building boundary vector data exist in spatial databases, the Building-Form Generator 
checks the positions of cluster points relative to those boundaries. In step 2, using a Ray 
Crossing Number method (Shimrat, 1962), the model assigns zero to points inside a build-
ing footprint and one to points outside. The Cluster Detector outcomes are then used in the 
Geometry Cluster Detector (step 3), which applies Mean Shift and Fuzzy clustering algorithms 
for identifying geometric components in each building cluster. Mean shift is a non-parametric 
technique for detecting modes of a density (Eq. 1 and Eq. 2) and was originally proposed for 
image segmentation and analysis of multidimensional spaces (Comaniciu & Meer, 2002). 
Within a given building cluster, the algorithm initially selects centroid candidates and updates 
candidates’ positions to be the means of points in each iteration:

	

m(x) =
K x − xi( )xii=1

n∑
K x − xi( )i=1

n∑
	 (1)

	
K (x) = exp − x 2( ) 	 (2)

where K is a Gaussian kernel density estimation function of squared distances between points 
and the cluster centroid. The algorithm ends when the difference between m(x) and x is small 
(m(x) → x). The numbers of geometric components are defined based on the size of a building 
and examined by Fuzzy Clustering. This soft clustering method gives each point a degree of 
belonging to different clusters instead of assigning concretely to a particular group. If the fuzzy 
partition coefficient is more than 0.9, the Cluster Detector breaks a building component down 
into multiple ones (Figure 2).

In step 4, the Geometry Detector uses three predefined geometry models to identify geo-
metric types for each building component: one linear model for a flat roof, two linear models 
for a gable and single sloped roof, and one non-linear model for a gambrel roof (Figures 3 and 
4). For each component, the algorithm fits three predefined models and selects a model with the 
lowest mean squared error (MSE). For the optimization of computing performance, we use the 
normal equations that perform faster compared to other non-vectorize least square regression 
techniques. The normal equations apply matrix derivatives for minimizing the model’s error to 
calculate the fitting parameters (Eq. 3 and Eq. 4):

	 q = XT × X( )−1
× XT × y 	 (3)

	
MSE = 1

m
y  − q × XT( )−1( )2

i=1

m

∑ 	 (4)

where X is a matrix Mm×n+1 of coordinates (x and y values), y is a m-dimensional vector Vm of 
elevation information. θ is a n+1-dimensional vector Vn+1 of fitting parameters, m is the number 
of points in each geometric component, and n is the number of coordinates (two in our study).
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In the final step, for each building, the Building-Form Variables Generator calculates 
building-form variables (Eq. 5) and generates building information variables such as area, 
number of floors, and height.

	
Cpv  = ncluster + cltypei

× cl pi( ) + if cl _ exti ,1( )
i=1

n

∑ 	 (5)

where ncluster is the number of geometric components in a building, cl_typei is a categorical value 
for each geometry type, clpi

 is the portion of building for each type, and cl_exti is a binary value 
for the existence of overhang. Cpvis a continuous variable indicating the complexity level for a 
building’s geometry. Higher Cpv values specify that a building has diverse cluster types, more 
overhangs, and complex components.

3.3  Spatial Variables Generator
The Spatial Variables Generator converts building-form variables in addition to other physi-
cal, institutional, cultural, and environmental parameters into proximity and density variables. 
These external and internal driving forces are fed into the IUMAT-LUM Simulator for land-use 

FIGURE 2.  Examples of the Cluster Detector results: Mean shift and Fuzzy Clustering algorithms 
are used for grouping LIDAR points in each building and defining geometry components. Each 
color represents one geometry component.
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	 Journal of Green Building� 11

FIGURE 3.  An example for Geometry Detector fitting results: three predefined models fitted to a 
building component and the algorithm selects a model with the lowest MSE value.

 
 

changes. The algorithm converts building-form variables, which have coordinate information 
to GIS vector data and combines it with spatial databases. IUMAT-LUM Spatial Variables 
Generator employs five steps in coding the GIS vector data to the input data required for train-
ing IUMAT-LUM simulator (Figure 1). The Spatial Variables Generator converts all parameters 
into the same projection. These parameters are then converted into a spatial grid system with a 
6x6 meters cell resolution so that the smallest structure is represented in one cell while optimiz-
ing the simulation process and memory requirement. The Spatial Variables Generator creates 
ten descriptive variables (Table 1) that include a land-use type of each cell. Similar to other 
studies (Almeida et al., 2008), we convert related land-use types into one category, e.g. different 
residential densities are transformed into one. In doing so, we reclassified 21 land-use classes 
into 8 groups: residential, commercial, educational, industrial, recreational, urban infrastruc-
ture, and non-urban. The Spatial Variables Generator uses the k-dimensional tree algorithm or 
KD tree (Bentley, 1975) for searching the nearest neighborhood and calculating the proximity 
variables (Table 2). A KD tree is suitable for avoiding inefficiencies in brute-force computations 
as the required number of calculations are reduced by encoding the k-dimensional data into 
new partitioned regions. The algorithm then calculates Euclidean distance between each cell 
and nearest neighboring cell (Pijanowski et al., 2002) for each parameter (e.g. commercial).

Next, the Spatial Variables Generator produces eleven candidate parameters for density 
variables (Tables 3 and 4) using Kernel density estimation (Scott, 2015) with a Gaussian 
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12	 Volume 14, Number 1

FIGURE 4.  Examples of the Geometry Detector outcomes in Amherst: algorithm fits three 
predefined models to each geometry component and detects roof types.

 
 

function. Kernel density estimation is a nonparametric spatial agglomeration for pre-smoothing 
data, especially with large samples and variables. This smoother density method demonstrates 
some level of clustering for capturing the distribution and spatial relations (Freisthler, 2013). 
For each variable in Table 3 and 4, the algorithm places a kernel (Eq. 6) over each cell and 
calculates the density estimate for the distribution:

	
f (x , y) =  

1
nh

K di ,h( )
i=1

n

∑ 	 (6)

where n is number of cells, h is the bandwidth, K is kernel function, f(x, y) is density esti-
mate at the location of (x, y), and the distance between cell (x, y) with each neighboring cell. 
Bandwidth and grid size are two important parameters that affect the outcome of density vari-
ables (Anderson, 2009). Using the Gaussian-kde algorithm in a Scipy-Stats library (Python), 
the algorithm applies Eq. 7 (Scott, 2015) for calculating bandwidth:

	 h = 1.06 × Std × n−
1
5 	 (7)
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TABLE 1.  Summary of descriptive variables.

Variable Description

1 x Latitude converted to feet

2 y Longitude converted to feet

3 z Elevation in feet

4–9 conservation, vegetation, water, recreational, 
railroad, educational

Binary variables

10 Trans Binary variable: impermeable surfaces related 
to transportation network (paved road, 
parking, driveway)

TABLE 2.  Proximity variables (Euclidean distance).

Variable Description

11 d_residential Distance to nearest residential areas (land-use class: multi-family residential, 
high-density residential, medium density residential, and low-density 
residential)

12 d_commercial Distance to nearest commercial areas (land-use class: commercial)

13 d_m_comercial Distance to main commercial district

14 d_city_center Distance to the nearest city center

15 d_rec Distance to recreation spaces (land-use class: participation recreation, 
spectator recreation, and water-based recreation)

16 d_ind Distance to industries (land-use class: mining, industrial, and waste 
disposal)

17 d_edu Distance to educational facilities (university, college, and school)

18 water Distance to water bodies

19 d_m_road Distance to primary roads (transportation networks: paved road, tunnel, 
and bridge)

20 d_s_road Distance to roads (transportation networks: unpaved road)

21 d_p_trans Distance to public transportation

where the std is the sample standard deviation and n is the sample size. The algorithm uses a 
specified distance from a cell’s center to estimate the probability density variables. These vari-
ables indicate relations of each cell with local actions and global patterns. The algorithm uses 
small distance (100-meter bandwidth) for exploring the local effects and a wider search range 
(3000-meter bandwidth) for the overall pattern (Xie & Yan, 2008). For maximizing computing 
performance, the Spatial Variables Generator normalizes all descriptive, proximity, and density 
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variables (ranging from 0.00 to 1.00) by subtracting each variable from the minimum value and 
dividing the product by the maximum value. In the final step, the algorithm creates a binary 
transition variable for phase transition from one state to another. It detects land-use changes 
in different periods and assigns zero to non-change conditions and one to land-use changes. In 
most cases, we might have an unbalanced database due to the small ratio of land-use changes 
compared to stable states, which results in skewed model outcomes. In IUMAT-LUM, we use a 
downsampling method (Omrani et al., 2016; Provost, 2000) to deal with unbalanced databases, 
which is explained in section 4.1.

3.4  IUMAT-LUM Simulation Platform
IUMAT-LUM employs an ANNs-based land-use change model, which is a robust machine 
learning tool for recognizing complex patterns in data (Skapura, 1996). In the IUMAT-LUM 
framework, we employ the backpropagation algorithm (Rumelhart et al., 1986) for multi-layer 
network architecture. ANNs models are composed of several layers of nodes called multi-layer 
perceptrons, an input layer, one or multiple hidden layers, and an output layer. Associated 
weights control mapping from one node to connected nodes and the activation operation or 

TABLE 3.  Summary of density variables (Kernel density estimation).

Variable Description

22 agri_kde Kernel density of agricultural land (land-use class: cropland, pasture)

23 forest_kde Kernel density of forest (land-use code: forest and non-forested wetland)

24 water_kde Kernel density of water bodies

25 res_kde Kernel density of residential districts

26 com_kde Kernel density of commercial areas

27 rec_kde Kernel density of recreational regions

28 ind_kde Kernel density industrial areas

29 edu_kde Kernel density of educational spaces (university, college, and school)

30 trans_kde Kernel density of paved surface (transportation networks including driveway 
and parking lot)

31 walk_kde Kernel density of sidewalks & bike-path (transportation networks type: bike 
or walk path, lead walk, detach sidewalks, and attached sidewalks)

TABLE 4.  Building-form variables extracted from LIDAR measurements and converted to density 
variable (Kernel density estimation).

Variable Description

32 b_height_kde Kernel density of building height

33 comp_v_kde Kernel density of Building-form complexity index
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squashing function is a nonlinear function, which regulates relations between nodes and keeps 
cell output between certain limits (Graupe, 2013). Mean Squared Error (MSE) is used for 
training the ANNs model, which is a procedure for updating the weights and bias in the ANNs 
model. Since ANNs has the tendency to overfit training data (Triantakonstantis & Mountrakis, 
2012), in the IUMAT-LUM framework, we divide a given dataset into three subsets of training, 
validation, and test sets. The ANNs Model Builder runs a learning process over the training data, 
and checks the overfitting (validates models) by calculating the MSE over a calibration set. In 
doing so, the algorithm selects an optimal ANNs model that is not overfitted to the training 
data. And finally, the Land-use Simulator runs the optimized ANNs model over test data for 
simulating changes over time specified by users (Figure 5).

Multicollinearity refers to the strong correlation between independent variables and is one 
of the main challenges in machine learning, especially in ANNs algorithms, which cannot auto-
matically exclude relevant parameters (Garg & Tai, 2012). To deal with multicollinearity, instead 
of using data transformation methods like Principal Component Analysis, in IUMAT-LUM, 
we evaluate the correlation between variables and keep one predictor from highly correlated 
variables. Since Pearson’s r method only measures linear relationships, we also use Spearman’s 
rank-order correlations to evaluate possible monotonic relationships between parameters.

4.  RESULTS AND DISCUSSION

4.1  Study Area and databases
The town of Amherst, Massachusetts, for the period of 1971–2005 is used to test the IUMAT-
LUM framework. Located in the Connecticut River Valley, Amherst has three institutes of 
higher education—the University of Massachusetts, Hampshire College, and Amherst College. 

FIGURE 5.  Conceptual structure of IUMAT-LUM Simulator.
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The town has an area of 71.9 km2 and has experienced a steady population growth, from 26,331 
total population in 1970 to 37,819 in 2010. Amherst has diverse land-use classes ranging from 
relatively high-density commercial to forest and cropland. A random distribution of urban 
and non-urban lands, as well as a consistent trend of land-use changes since 1971, are valuable 
resources for generating and testing the land-use model. Additionally, the Amherst Planning 
Board in collaboration with UMass Campus Planning has comprehensive remote sensing and 
GIS vector data available. LIDAR measurements provided by the Town of Amherst are used to 
generate the building-form variables. Zoning, vegetation, hydro system, building boundaries 
produced by the town, as well as transportation networks, land-use (1971–2005), topogra-
phy, educational institutes’ boundaries provided by MassGIS are compiled in Spatial Variable 
Generator for producing explanatory variables (Figure 6).

In most urban areas, the number of cells without change is usually more than ones with 
land-use change. One common approach to deal with imbalanced data is to alter the balance 
artificially by upsampling or downsampling datasets (Provost, 2000). Dividing the Amherst 
dataset into three time-intervals (e.g. 1971–1985, 1985–1999, and 1999–2005), we downs-
ampled (Huang et al., 2009) or ignored cells from the majority. In each set, the algorithm 
assigns a value of one to cells that change in that time interval and zero to those that do not. The 
algorithm then measures the number of cells with changes and resamples from the no-change 
cells (Figure 7). In doing so, the adopted 6x6 meters cell resolution in Amherst with a total of 
1,933,022 cells is adjusted in different datasets (Table 5). For example, in the 1971–1985 set, 
20,132 cells were selected from the land-use map where 10,066 cells (assigned a value of one) 
belong to the cells that transitioned from non-urban in 1971 to built-up in 1985, while another 
half (assigned a value of zero) is sampled from non-urban cells in both 1971 and 1985. We also 
check the balance at different intervals by measuring the transition probabilities of datasets. 
Rather than using discrete sets, the algorithm combines three datasets and randomly divides 
it into 60% data as a training set, 20% data for a cross-validation, and 20% data as a testing 
set (Raj et al., 2010). In this way, the ANNs model is trained based on a continuous historical 
trend (from 1971 to 2005), not a discrete snapshot and can simulate future patterns with higher 
accuracy. Calibration and testing datasets are used to check overfitting and to determine if the 
ANNs model predictions over untrained data are reliable.

4.2  IUMAT-LUM Simulation structure
The IUMAT-LUM simulator uses ANNs classification model (ANNs-Cl) and ANNs regres-
sion model (ANNs-Rg) performances in predicting land-use change in Amherst. The number 
of hidden layers in the ANNs model depends on different factors, including the number of 
input and output layers, the complexity of the problem, the noise level in the data, the train-
ing algorithm, and the regularization (Sarle, 2000). Although in many studies, including Isik 
et al. (2013), a trial-error method was commonly used for determining the optimum number 
of hidden layers, Kavzoglu & Mather (2003) suggest 5–10 times the training size as a suitable 
number. Some studies, such as Omrani (2015) and Tayyebi et al. (2011), used only one hidden 
layer in predicting urban growth and travel mode respectively, while Wang & Mountrakis (2011) 
and Kia et al. (2012) developed ANNs with two hidden layers for simulation of urban growth 
and flood simulation. Like Zhao & Peng (2014), and Maduako et al. (2016), in the IUMAT-
LUM Simulator, ANNs-Cl has three hidden layers; each has nodes equal to the numbers of 
dependent variables, with one rectifier and two sigmoid activation functions. The normalized 
exponential function is applied to the output layer, so ANNs-Cl generates a zero or one value 
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FIGURE 6.  Thematic maps of normalized proximity and density variables in Amherst from 1971 
to 1985; values ranging from zero to one (yellow to red).
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for outcomes. With a similar structure, ANNs-Rg uses a sigmoid activation function for the 
output layer, so the outcomes range between zero and one, which determines the probability 
of land-use change for cells. A value of one indicates a maximum potential for a future change 
while a value of zero indicates a low probability. The algorithm initially runs ANNs models 
over the training datasets for a hundred iterations and updates the weights. After initial train-
ing, weights and bias are used in a separate computational loop, which uses training data for 
updating weights and the calibration set for calculating the MSE. Once it identifies a specified 
MSE value (over calibration subset), the training process is halted. The optimum ANNs model 
with the lowest error on the calibration data is checked with the test dataset for overfitting and 

FIGURE 7.  Maps of downsampled datasets present patterns of land-use change in Amherst from 
1971 to 2005. Top: Transition pattern from non-urban to urban types in different time intervals. 
Bottom: Land-use change patterns within different urban classes.
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underfitting of the ANNs model. Higher MSE of the test data indicates that the model is over-
fitted to the training data, while lower MSE of the test data demonstrates the reliability of the 
model in predicting untrained data.

For isolating the effect of each explanatory variable in the land-use model, we use the 
inverse version of the “drop one out” approach (Washington et al., 2010; Tayyebi et al., 2011). 
We run a series of normal equations for measuring variable effects in modeling land-use change 
within all six databases. For each iteration, the algorithm adds a new variable to matrix X, 
updates theta (Eq. 3), and measures the MSE value (Eq. 4). Figure 8 shows the trend of MSE 
values. For the first run, latitude (x), longitude (y), and height (z) are initially used in matrix X. 
For the second iteration, the binary variable of conservation is added to the matrix X. All inde-
pendent variables listed in Table 1–Table 4 have positive impacts on model MSE values that vary 
from a dataset to a dataset (Figure 8). For example, the distance to residential has more impact 
on land-use transformation of non-urban transition data compared to urban data. In urban 
databases, residential districts, educational institutes, and forestlands improve the predictability 
of the model, while in non-urban datasets, agricultural lands, green infrastructure, and trans-
portation networks have significant effects on land-use transformation. In another analysis, the 
relative effect of building-form variables on land-use modeling is separately explored. After the 

TABLE 5.  Transition probabilities in ANNs datasets for Amherst.

Number 
of cells

Global Transition 
probabilities

Global Transition 
probabilities 
Urban Cells

Global Transition 
probabilities Non-
Urban Cells

Training 20,132 0.0451 0.0318 0.0496

Calibration 21,308 0.0497 0.0306 0.0574

Test 12,758 0.1187 0.2252 0.0583

TABLE 6.  Mean squared error of land-use models with included variables for the statistical 
analysis. x, y, and z as basic variables are used for the initial run and dependent variables (Table 
1–Table 4) are included in the final run.

Initial Run
Building 
Height

Building 
Complexity 
Index

All dependent 
variables 
included

Non-urban Training set 0.2436 0.2378 0.2158 0.1540

Non-urban Calibration set 0.2442 0.2395 0.2191 0.1524

Non-urban Testing set 0.2442 0.2376 0.2142 0.1526

Urban Training set 0.2316 0.2310 0.1884 0.1391

Urban Calibration set 0.2294 0.2289 0.1909 0.1421

Urban Testing set 0.2322 0.2316 0.1885 0.1381
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first run with basic variables (x, y, z), building height and building complexity indices are added 
to the list of variables for the next two iterations (Table 6). In Amherst, these building indices 
improve prediction of the land-use model by 11% in non-urban and 19% in urban datasets.

4.3  Simulation results
After successful training and calibration, bias and weights of ANNs models are used for forecast-
ing land-use change in the test data. The accuracy value of each model is measured by compar-
ing predicted outcomes applied to the test data versus expected values. Multiple replications of 
learning, validating, and testing subsets have been conducted in order to avoid the selection of 
a particular subset by random sampling (called randomness burden). The variation among the 
simulation results is 5.00 %, and one of the outcomes is presented in Table 7. In non-urban 
datasets, the MSE over testing data for the simulation is 0.085 in the ANNs regression model 
and 0.077 in the ANNs classification model with a 0.53 F1 Score, while in urban datasets, 
ANNs models (regression and classification) have better predictions compared to non-urban 

FIGURE 8.  Improvement trend of model MSE values in predicting land-use change while adding 
one independent variable in each iteration.
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datasets, where MSE is 0.033 in the ANNs regression model and 0.017 in the ANNs classifica-
tion model with a 0.65 F1 Score (Figure 9). Since the ANNs models have trained over balanced 
datasets, the performance of the models is not significantly different in predicting the state of 
non-change and change cells. It is also observed that the Simulator performs better in predict-
ing state changes in urban cells and differences between MSE values of ANN classification and 
regression models steadily decrease until they reach to the global minimum. However, for non-
urban sets, the models arrive at the global optimum more quickly and have higher differences 
between MSE values of ANNs-Cl and ANNs-Rg models.

For visual comparison, model simulation outcomes were converted into color-coded maps, 
while in ANNs-Rg models, which generate local transition probabilities ranging from zero to 
one, the outcomes were transformed into thematic maps for better visualization (Figure 10). 
The results indicate that the IUMAT-LUM can produce satisfactory predictions about the pat-
terns and scope of changes with slight differences between simulated results and the observed 
situation. One reason for these discrepancies is the complex spatial interactions and behavioral 
differences of land-use classes within urban systems, such as green infrastructure or transport 
networks. Another reason is the interaction between land-use types not being included in 
IUMAT-LUM. The emergence or evolution of a particular class in a region creates different 
situations for neighboring cells, which results in changing ultimate land-use pattern (Basse et 
al., 2014). In addition, socioeconomic characteristics as another deterministic factor have not 
been integrated into the IUMAT-LUM framework at this stage.

5.  CONCLUSIONS AND FUTURE DEVELOPMENT
In this paper, we described how the IUMAT-LUM framework applies Remote Sensing, GIS, 
and Artificial Neural Networks to simulate urban growth patterns. In IUMAT-LUM, the 
Building-Form Generator integrates vector GIS routines and LIDAR data to building variables 
in five steps. We outlined a method for extracting building geometry variables by implementing 
Density-Based Spatial Clustering, Mean Shift, and Fuzzy clustering algorithms for detecting 
geometric clusters. We fit three predefined normal equation models (using a model-driven 
approach) to identify the form of each component in the Geometry Detector. In addition to 
physical, environmental, cultural, and institutional parameters commonly explored in land-use 

TABLE 7.  The goodness of fit in the IUMAT-LUM ANNs-classification models after 300 iterations 
with regards to different subsets.

MSE Precision Recall F1 Score

Non-urban Training set 0.052 0.404 0.809 0.539

Non-urban Calibration set 0.074 0.399 0.795 0.532

Non-urban Testing set 0.077 0.400 0.804 0.534

Urban Training set 0.011 0.496 0.987 0.660

Urban Calibration set 0.021 0.481 0.977 0.645

Urban Testing set 0.017 0.490 0.983 0.654
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FIGURE 9.  Mean Squared Error decay curve regarding the IUMAT-LUM ANNs models after 300 
iterations. Top: MSE trend of ANNs classification and regression models in non-urban datasets. 
Bottom: MSE trend of ANNs models in urban datasets.
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FIGURE 10.  Land-use simulation results for the town of Amherst from 1971 to 2005. Left: Map 
of the testing dataset that shows the expected value in urban and non-urban cells; red presents 
cells with a transition and blue shows stable cells. Center: Map of ANNs-Cl predicted values; 
green represents areas with changes and blue shows areas without any changes. Right: Thematic 
map of ANNs-Rg predicted values ranging from zero to one (yellow to red) that represent 
land-use change probability.
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modeling, we introduced building-form indices as a new determinant factor in simulating land-
use change. We applied the IUMAT-LUM framework to the town of Amherst, Massachusetts. 
Outcomes suggested where land-use transition will be more likely. IUMAT-LUM distinguishes 
urban regions (residential, commercial, educational, and industrial areas) from non-urban 
lands (forest, water bodies, agriculture, conservation), and predicts transition probabilities 
in each group. Our results indicate that building-form indices in combination with other 
spatial explanatory variables improve the predictive power of land-use modeling. In the town 
of Amherst, building-form indices improve model predictions by 11% in non-urban and 19% 
in urban datasets. Regions with higher building geometry indices have higher probabilities of 
land-use transitions, in other words, more built-up urban areas will have more land-use change 
compared to less built-up areas. As such, the effects of building-form indices are more notice-
able in urban zones than non-urban areas.

The IUMAT-LUM indicates positive effects of the building-form indices on the land-use 
model performance in the town of Amherst. Since the case study area is relatively small, the 
proposed model requires further development before it can have any practical applications. 
In the next stage, IUMAT-LUM will be examined in metropolitan areas (such as Boston and 
Philadelphia), where the role of the vertical aspect of urbanscape may contribute more to urban 
growth patterns.

IUMAT-LUM, in its current stage cannot recognize the type of changes in the modeling 
process. In the future, our focus will be on predicting the type of new development. Impacts of 
explanatory variables might alter from one type to another land-use type (Basse et al., 2014); for 
example, a higher walkability index promotes residential developments rather than industrial, 
or distance to major roads have similar impacts on residential and commercial sectors. Like 
Carrero et al. (2014) and Tayyebi & Pijanowski (2014), we believe that single ANNs modeling 
methods cannot solely provide a robust approach for simulating different land-use types. In the 
next stage of this research, multiple ANNs will be integrated into IUMAT-LUM for modeling 
different types of land-use change.

Although the predefined geometry models used in this study can recognize most common 
building-forms, we need to develop a comprehensive archive of predefined models for detect-
ing complex geometries. The Building-Form Generator in the IUMAT-LUM framework pro-
vides information about architectural characteristics of buildings such as geometric prototype, 
footprint, and site coverage. Although IUMAT-LUM does not include all the building-form 
variables in land-use modeling, these variables in association with other attributes such as 
building Energy Use Intensity, orientation, and number floors, will be used in other IUMAT 
models (Mostafavi et al., 2017) for capturing resource consumption. The proposed method may 
assist planning and design agencies to produce a comprehensive vectorized database of urban 
and building geometries. This unsupervised method for parameterizing building geometry can 
also be automated and integrated into other urban metabolism analytical tools similar to the 
IUMAT framework.

Decision makers and city planners can use the IUMAT-LUM model for determining roles 
of explanatory parameters on land-use changes and studying future patterns. They can prioritize 
the planning resources for future scenarios. The IUMAT-LUM approach to predicting future 
growth patterns within cities’ borders is based on historical trends. Comparing simulation results 
with observed outcomes after implementing a policy could provide new insights into impacts 
of a particular planning policy. Planners can predict possible developments in environmentally 
sensitive regions, and regulate non-urban conservation policies accordingly. As an analytical tool 
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for land-use modeling, it is hoped that IUMAT-LUM can be integrated with urban metabo-
lism analyses for developing sustainable land-use policies that account for the complex spatial 
relationships of dependent parameters.
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