
In
d

u
st

r
y

 C
o

r
n

er

28	 Volume 10, Number 4

INTRODUCTION
Although visual programming is being broadly implemented in other disciplines, it
has only relatively recently become an important supplement to three-dimensional
modeling programs in the architecture, engineering, and construction industry.
Currently, Grasshopper in conjunction with Rhino is a leading example of a visual
programming environment that is strongly supported by a user community that
is developing additional functionality, but Grasshopper does not yet work directly
with building information modeling (BIM) software. Dynamo is relatively new,
but shows considerable promise in becoming a constructive tool to complement
BIM, 3D modeling, and analysis programs because it includes parametric geom-
etries and works with Revit, a leading BIM software program. Three case studies
are described: extensibility of Dynamo through the use of a building energy simu-
lation package, controlling a virtual model’s response through light level sensors,
and interactively updating shading components for a building facade based on solar
angles. They demonstrate that one can work directly within building information
models (BIM) using a visual programming language through updating component
parameters. These case studies demonstrate the feasibility of a workflow for sustain-
able design simulations that is different than that more commonly used -- having
a separation between design and analysis models and using a neutral file format
exchange such as IFC or gbXML to transfer data. As visual programming languages
are still a bit uncommon in the building industry, a short background is provided
to place them within the tool set of other customizable tools that designers have
been developing.

KEYWORDS
visual programming language, VPL, building information modeling, BIM,
Dynamo, Revit, Grasshopper, computational design

Visual Programming for Building
Information Modeling: Energy and Shading

Analysis Case Studies

Karen Kensek1

1. University of Southern California, School of Architecture, Watt Hall #204, Los Angeles, CA 90089-0291, kensek@usc.edu,
213-740-2081

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 29

background

Key terms
To place this paper in context, it is beneficial to understand a few key terms: building infor-
mation model (BIM), building energy modeling (BEM), interoperability, and visual program-
ming languages (VPL).

A building information model is a 3D model created from parametric objects (e.g. wall,
door, window, roof) that contain data about the objects (e.g R-value, hardware set, cost,
slope). This is fundamentally different from other 3D modeling programs whose basic com-
ponent is a surface or solid (e.g. Rhino 3D) that does not have associated data. A BIM can
be used throughout the life-cycle of a building, but the information that is useful is different
for the various stake-holders. For example, an architect might use the BIM to produce con-
ceptual designs, working drawings, preliminary cost estimates, and door schedules. A con-
sultant might use it as the basis for energy simulation or structural calculations. Contractors
find it useful for clash detection, construction sequencing, and detailed cost estimating, and
often facilities managers can use the information for tracking assets in a completed building.
There are several common building information modeling programs: Revit, ArchiCAD, Vec-
torWorks, Digital Project, AECOsim Building Designer, among others.

Building energy modeling is a general term for hundreds of software programs (from very
simple to incredibly complex) that are used for energy simulation of buildings, often for cal-
culating heating and cooling loads, but also thermal comfort and HVAC sizing and control.
A few common software programs are DOE 2, EnergyPro, DesignBuilder, eQuest, HEED,
Sefaira, Green Building Studio, AECOsim Energy Simulator, but there are many choices
depending on one’s specific needs.

Interoperability refers to the ability to move data from one program to another. The data
could be a 3D model; file formats such as DWG, SAT, DXF, and many others can be used to
import and export raw geometry (like surfaces and solids) from one 3D program to another,
usually successfully. It is more difficult to transfer BIM data. Two file formats that are com-
monly used are gbXML that is used for the transfer of the geometry and energy data and IFC
(Industry Foundation Classes), which is in use and under further development to provide an
open source method of transferring “all” types of BIM data. Neither technique is fool proof,
and some firms have created custom methods of translating data that fits their own workflow.
Other workflows include maintaining separate models for design and for simulation. This
lessens potential advantages of using BIM data throughout the design/engineering/construc-
tion/occupancy process.

Visual programming languages use graphics (such as blocks and wires) to create a soft-
ware program. Essentially the flow diagram is the program. Examples of visual programming
languages include Simulink, Grasshopper, Dynamo, Marionette, and others. There user inter-
faces are quite different from text based programming languages where the code is typed into
a text editor or a more sophisticated code editing program, for example BASIC, LISP, C#,
Python, Java, Processing, etc.

Workflows for energy simulation
Three major workflows are often used by designers when studying sustainable options for

their buildings:

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

30	 Volume 10, Number 4

1.	maintaining two separate 3D models, one for design and another for energy simula-
tions.

2.	transferring the 3D model to the energy software via formats such as gbXML or IFC.
3.	using a plugin within the 3D software that connects directly to the energy simulation

software.
Hybrid variations also exist.
For example,
1.	There could be a separate Rhino file and an EnergyPro file. The designer updates

each of them separately, and there is no flow of data between them.
2.	An IFC or gbXMLfile could be exported from ArchiCAD to DesignBuilder for simu-

lation with (hopefully) a set of complete and accurate data.
3.	IES <VE> or Sefaira can be accessed via a plugin (a small program for a specific pur-

pose) in Revit.
Each of these has its own set of advantages and disadvantages that effect the turn-around

time of design decisions, the re-entering of data, and which software one can actually use.

A fourth workflow, still relatively uncommon, is to associate the 3D model to energy
software within a visual programming environment that could allow for more direct passing
of data from one simulation engine to another, even those written by different developers, in a
common working environment.

Customization of existing software
Users need to have the ability to customize existing software so that they can work more
effectively in their discipline specific applications. For example, early AutoCAD software was
released with AutoLISP capabilities that allowed for the development of scripts to automate
time-consuming tasks and add new capabilities (Fig. 1). Text based scripting languages have
not disappeared and are still in use, including examples such as Python, Rhino Script, MEL,
and MaxScript. In addition, computer software is supplemented with application program-
ming interfaces (API) that allow developers and other skilled users to access the internal guts
of the software to create new sub-programs or plug-ins (Fig. 2, Fig. 3).

Figure 1: Solar envelope generator program showing some of the AutoLISP code. (Kensek and
Knowles 1997)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 31

Figure 2: Solar envelope plugin written in C# using the Revit API. (Kensek and Henkhaus
2013)

Recently, there has been a trend towards visual user interfaces for programming that
allow users to create customized, flexible, and powerful form-generating algorithms without
having to first learn how to write code. Visual programming is a type of computer program-
ming where users graphically interact with program elements instead of typing lines of text
code. Nodes are created; they can be numbers, sliders for adjusting values, operators and
functions, list manipulation tools, graphic creators, scripts, notes, “watch” nodes, customiz-
able nodes, and other types depending on the tool. They are virtually wired together, and the
program is resolved from left to right. (Fig. 4).

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

32	 Volume 10, Number 4

Figure 3: In-progress Revit plug-ins that calculate heat gain of different types of window
shading devices (left) and that calculates the size of a rainwater cistern based on location and
roof area (left: mage courtesy of USC students Daubert, Harrison, and Reego and right: Barley,
LinShiu, and Tucker) (Kensek 2014)

The slider nodes for the canopy allow the user to experiment with a range of design solu-
tions (Fig. 5).

Different variations of the bridge are thus produced (Fig. 6). Packages (other sets of
nodes with their own capabilities packaged together for download and installation) from other
developers can also be integrated for additional features.

And although a trend has been observed in the increasing use of visual programming
languages (VPL) in schools of architecture, VPLs compliment rather than replace traditional

Figure 4: Dissection of a Dynamo graph for bridge creation (note the nodes and wiring): 1)
left supporting arch; 2) right supporting arch; 3) walkway (slab, points, connecting lines); 4)
canopy script; 5) cylindrical shape applied to the lines; 6) exporting geometry to Revit. The red
lines were added to make the diagram easier to understand. (image courtesy of USC students
Ilyassov and Tazhibayev) (Kron 2014)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 33

Figure 5: Canopy script (section 4 of Fig. 3) is used to interactively change the size and shape
of the canopy. (image courtesy of USC students Ilyassov and Tazhibayev))

Figure 6: Three iterations of the canopy parameter. (images courtesy of USC students Ilyassov
and Tazhibayev)

text-based programming languages (TPL). In a recent study, both scripting and visual pro-
gramming were taught to a set of architecture students with no computing experience, and it
was determined that for beginners, VPL lead to better results that tended to only explore para-
metric variations while students using TPLs achieved more complex implementations (Celani
and Vaz 2011). Some visual programming environments also allow for the use of text-based
scripting to combine the advantages of both. Research efforts are also underway that provide
mechanisms for teaching text-based programming through the use of visual programming
(Wurzer and Pak 2012).

Visual Programming for Architecture, Engineering, and
Construction
“Many new ways of generating parametric models have been developed … The commonality
of all these parametric modelling environments is the ability for designers to modify param-
eters and relationships that trigger the transformation of related model parts. This is now a
popular way to create and modify digital models” (Davis 2013). Davis goes on to develop his
own interactive textual programming environment (Yeti) that continuously evaluates the code
while generating the geometry.

Generally, visual programming environments do not typically exist within commercially
available building information modeling applications. The popular Grasshopper plug-in to
Rhino is free, powerful, and has a large group of users who are actively expanding its capabili-
ties. However, it is used exclusively with Rhino, which is a surface modeling program. The

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

34	 Volume 10, Number 4

resultant graphic data can be transferred to BIM software, but this is often problematic due to
different file structures and geometric definitions.

Dynamo was developed as a plug-in for Revit, a BIM software program to provide a
visual programming environment. It can also be used with other software programs although
that is currently not widely implemented in practice. In addition, bridges between the Rhino/
Grasshopper environment and Revit/Dynamo are being created. For example, Rhynamo
allows the resultant geometry and data associated in it to be brought into Dynamo (Miller
2014). Overall though, portability between the environments is still a problem with transfer-
ring geometry and data and reusing programming libraries (Leitão and Santos 2011).

Grasshopper
Explicit History (the first version of Grasshopper) was released in 2007 as an add-in to Rhino
3D by David Rutten at Robert McNeel & Associates. Since its original inception, the func-
tionally of Grasshopper has grown tremendously with the development of third-party plug-
ins including environmental simulation components that allow for solar studies, input into
energy engines, and optimization. A number of components have been developed by outside
developers for a myriad of uses; for example, many have been developed to automate envi-
ronmental calculations: visualization of weather data, daylight and energy simulation, opti-
mization, or other tasks related to energy simulation. A partial list of these tools includes
ArchSim, Gerilla, and Ladybug + Honeybee that links to EnergyPlus; DHour for visualizing
weather files; DIVA for daylight and energy modeling; Geco that links to Ecotect; Heliotrope
for sun angles; Mr. Comfy for visualization of thermal and climate data, and Tortuga a global
warming potential evaluator. Visual programming tools can make studying sustainable design
strategies easier at the early stage of design. There are other components for Grasshopper for
optimization (e. g. Galapagos and Octopus) that are useful for energy and lighting calcula-
tions. The ecosystem growing around Rhino and Grasshopper is continuing to grow in size
and sophistication (Fig. 7, Fig. 8).

Figure 7: Diagram of Grasshopper canvas sub-sections for complex thermal and daylighting
optimization. (image courtesy of USC student Gamas) (Gamas et al. 2014)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 35

Figure 8: One run from the study shown in Figure 7 seeking to optimize EUI and thermal
autonomy (for the 51st floor southwest corner with a window-wall ratio of south 34%, west
53%) using Rhino 3D, Grasshopper, DIVA, Dhour, Heliotrope, Ladybug, ArchSim, and others.
(image courtesy of USC student Gamas) (Gamas et al. 2014)

Grasshopper is specifically mentioned because it has a strong set of tools available and
an active user base. However, it can only be used with Rhino 3D, which is not building infor-
mation modeling software. Also, although the Rhino/Grasshopper environment is currently
more deeply developed along these lines than Revit/Dynamo, the latter does have features that
are distinct from the former such as the existence of parametric objects. (Note that another
VPL called Marionette has just been released.)

Dynamo
“Dynamo is a plug-in for Revit and Vasari that displays a graphical interface for adding and
adjusting parametric functions of BIM components” (Ogueta 2012). Autodesk Revit is a
widely used BIM program, and Dynamo was originally written by Ian Keough as a plug-in
to Revit using the Revit API and the Windows Presentation Framework (WPF). In the early
2000’s, Autodesk started participating heavily in the development of Dynamo and by 2015
had released Dynamo 0.8.0 as an OpenSource program. It is evolving rapidly. As of August
29, 2014, there were nearly 25,000 downloads of more than 350 packages (custom nodes
and plug-ins) by under 100 developers. By May 21, 2015 those numbers had reached almost
75,000 downloads and 550 packages by more than 500 authors. Dynamo is in an explosive
stage of growth.

Ian Keough recently explained the principles behind the development of Dynamo
(webinar, May 8, 2015) including these three:

1.	Users should be able share tools. This is exemplified through the development of
packages that users can upload.

2.	Every user should be able to use Dynamo. For example, a client might just want to be
able to view a model and manipulate key parameters interactively or a programmer in
the office might develop a new tool for streamlining the workflow in the office.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

36	 Volume 10, Number 4

3.	Users should be able to do real-time analysis so that they can use the feedback imme-
diately for real-time design decisions. Simulation of environmental related concerns is an
excellent example where this would be useful.

2.4 Revit parameters
One key difference between Rhino and Revit is that Rhino is a surface modeling 3D program,
and Revit is based on parametric objects like walls, doors, floors, and custom components that
it calls families. For example, a door has parameters of width, height, sill height, manufacturer
among others, and custom parameters can be added. Dynamo allows for the creation of 3D
geometry in the Dynamo environment (“graph”), but also lets the users access for viewing and
for editing the values of the parameters of a family in the Revit modeling environment.

Case Studies
All three case studies focused on the use of Dynamo for studying environmental design issues,
not just for creating parametric geometry. The visual programming workflow can be especially
useful in the early stages of design when some (but not all) of the constraints are known about
the building, leading to a “design space” conducive to exploration. Jabi found that he had to
develop a new tool that that would “more closely harmonise the outputs of parametric digital
spatial representations with the input requirements for building performance simulation,” but
hoped that Dynamo/Revit could also provide this functionality if his requirements of non-
manifold topology were met (Jabi 2014).

Dynamo can access directly sun path data in Revit. In addition, with the use of the
custom package from Thornton Tomasetti, “Energy Analysis for Dynamo,” it can link to con-
ceptual geometry and provides custom nodes for the input of data for Green Building Studio.
The first case study demonstrates this. The second and third examples demonstrate the appli-
cability of parameters where the custom parameters of shading devices are updated based on
stimuli.

Case Study One: “Energy Analysis for Dynamo” Package
Although the functionality of Dynamo is growing very quickly, the environmental simulation
components available for Dynamo are almost non-existent both for passive and non-passive
calculations. However, there are some tools. One is an academic research implementation of
a non-dominated sorting genetic algorithm to optimize daylighting and energy use (Asl et al.
2014). The plug-in used for the following example was Thornton Tomasetti’s CORE Studio’s
“Energy Analysis for Dynamo” package (beta version was released on October 22, 2014). It
provides a link between Revit and Green Building Studio from within Dynamo by connecting
Revit’s conceptual modeling environment with many of the core features of Green Building
Studio. Technically, conceptual masses are not driven by parameters in the same method that
the fully detailed building model components are in Revit, but this example instead demon-
strates the extensibility of Dynamo through outside programs.

For this workflow, Revit 2015 and Dynamo 0.7.2 were used to compare the energy con-
sumption of a building with and without window shades (Fig. 9) (Konis and Kensek 2015).
The first set of analysis was done changing only the shading depth and assuming double pane
clear glass, lightweight construction with a typical mild climate insulation, and a cool roof
with typical insulation. The results of these analysis have than been compared to each other in

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 37

order to find the configuration for which the yearly fuel cost is the minimum available in that
particular site for that particular building. The energy settings available in the node are build-
ing type, glazing, shade depth, HVAC system, and operating schedule.

The energy settings available in the node are Building Type, Glazing, Shade Depth,
HVAC System, and Operating Schedule. Changing the values of the two overhang sliders
allows to set different values for north/south and east/west facades.

The mass was exported to Green Building Studio for the energy analysis. A summary of
the results shows that shading devices save money in fuel cost (Table 1). Twenty-two analyses
were carried out, and the results were compared both with the use of Dynamo and without.

The simulation results are not shown directly in Dynamo, but must be accessed in Green
Building Studio. In addition, because the Thornton Tomasetti package used the Revit concep-
tual mass instead of the detailed building model, parametric values in the 3D model were not
used. The next two case studies show how parameters can be directly accessed from the build-
ing information model and used within the visual programming environment.

Case Study 2: Dynamo linking photoresistor value with 3D model
This example is from a previously published research project where the brightness of light
registered by a photoresistor on an Arduino board caused a Revit model to change (Kensek
2014). It did this by indirectly updating the parameters on three Revit families: the size of the
holes in the dynamic panel, the rotation of the louvers, and the length of the overhang on the
house (Fig. 10).

Lighting levels were adjusted manually to partially block daylight access to the photo-
resistor, so that the amount of light hitting the photoresistor lessened and its value output

Figure 9: Window shading turned on (left). Energy setting variables (middle). Link of Revit
model to energy settings (right). (images courtesy of USC students Gao, Milian, Toldo)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

38	 Volume 10, Number 4

changed from 255 to almost 0. This value was passed from the Arduino board through a
processing script to Dynamo that then updated the LightLevel parameter in the compo-
nents and changed their width, rotation, and radius as applicable. Slowly, the Revit model
updated (Fig. 11).

The third case study also uses changes to the family parameters to change the
components.

Case Study 3: Attractor Exercise and Dynamic Solar Shades
Updating custom parameters was the method used for creating interactive solar shades. The
first part of the exercise was to set up a simple Dynamo sketch that change the circumference
of circles based on the location of a slider controlled script – the attractor (Fig. 12 and Fig. 13).

Figure 10: Three Revit families: overhang, louvers, and panel and their parameters.

Figure 11: 3D model in Revit: light level is 255 (left). 3D model in Revit: light level is 75 (right).
(the original house was modeled by USC student Martinez)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 39

Figure 12: Attractor sketch in Dynamo. (image courtesy of USC students Hopper and Lohgren)

Figure 13: Parametric panel responding to the position of the attractor. (images courtesy of
USC students Toldo and Chow)

The same technique was used for changing the parameters of Revit families based on
the angle between shading device and the sun. After accessing the sun’s position in Revit, an
attractor script modified custom parameters on façade panels and shading devices based on
the sun’s position in the sky (Fig. 14).

Figure 14: Sun shading device responding to solar position by getting deeper when the sun
has a lower altitude. (images courtesy of USC students Dharane and Aljammaz)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

40	 Volume 10, Number 4

The final example not only has the values on the window coffer change dimensions, but
also the color of the panel based on the solar altitude (Fig. 15, Fig. 16).

Aksamija and colleagues also used parameters for dimension values for more complex
solar shading devices based on solar radiation values. Their process involved exporting the
model from Revit, calculating solar angles and radiation values in Ecotect, collecting the data
in Excel, and using a custom WhiteFeet plug-in to export the data to the solar shades’ param-
eters in Revit (Aksamija et al. 2011). This process could be accomplished within Revit with
the use of Dynamo.

Discussion
In the first case study with the “Energy Analysis for Dynamo” package, there were several
downsides with using Dynamo especially in comparison with similar workflows completed
with Rhino, Grasshopper, and its ecosystem of packages (Konis and Kensek 2015):

•	 Dynamo only links with Green Building Studio (GBS) and the user still has to go
into GBS for any complex changes and visualization of results.

Figure 15: Sun shading device parametric family (left) and opening size responding to solar
position (right). (images courtesy of USC students Ilyassov and Tazhibayev)

Figure 16: Panel changing color in response to solar angle (left) and interior rendering (right).
(images courtesy of USC students Ilyassov and Tazhibayev)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 41

•	 It only analyzes conceptual masses, not the detailed building model.
•	 Dynamo and the energy package are not very stable yet.
•	 There is a comparatively small user base and teaching material.
•	 There is a lack of optimization tools.

However, a few critical advantages were noticed:
•	 After Dynamo is set up, the user can easily swap out different building models.
•	 It works within a BIM authoring tool and conceivably (not tested) could work within

other software as it is an OpenSource software program.
•	 One can easily add sliders for values that are important to a study so that specific

parametrics can be controlled during the design process.

In case studies two and three when working directly with family parameters, the biggest prob-
lems were

•	 the lack of consistent nomenclature between Revit and Dynamo about families and
parameters.

•	 stability problems with Dynamo.
•	 missing nodes and features.
•	 slow update times. “Interactive programming (also known as live programming) seeks

to remove any latency between writing and running code” (Davis 2013). The diffi-
culty faced is that the updating of the Revit families themselves takes time.

Overall, however, the workflow for interacting with a building information model
through the use of parametric updates proved to be a feasible method for testing of sustainable
design alternatives. Visual scripting offers a potentially more flexible workflow than tradi-
tional methods. “The 3D model is one input into the simulation (the weather file would often
be a second input). The simulation program is a component node in the overall workflow.
Conceptually it is very different from the other workflows conceptualizing the simulation
program as a node.

•	 “there is explicit movement of the data
•	 a specific parameter can be easily changed to note its effect in the overall simulation

results
•	 the output of the component can be more easily channeled into another simulation

node
•	 potentially, there is a future ability to design more holistically as the tools are visible

and more may be used at one time
•	 optimization algorithms can be applied as part of the workflow
•	 more tools can be developed that increase the functionally of the workflow as the

apps are easier to create than full blown software programs
•	 there is an expectation that advanced users can create their own nodes
•	 complex workflows developed for one building can easily be used to study other

buildings” (Konis and Kensek 2015)

Conclusion
Maleki et al. contend that “the recent history of parametric CAD (at least in building design)
can be told as a tale of improving interfaces to the parametric engine, largely through interac-
tions with the dataflow graph,” and that “liveness” is critical for improved software (Maleki

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

42	 Volume 10, Number 4

et al. 2014). Visual programming, if done well, can provide the immediate reactions that are
necessary by providing a link between the geometry and the data. A visual programming lan-
guage can also provide a bi-directional link between the design tool / model operator and the
building performance simulations environment / calculation model (Negendahl 2015). Neg-
endahl concludes that this type of integrated dynamic model can better support the design
during the early stages of design.

The use of visual programming languages in AEC extends beyond the focus on energy
and shading discussed; applications in generative design development (Miller 2009), land-
scape architecture (Briscoe 2014), structural performance (Makris et al. 2013), construction
detailing (Zarzycki 2012), fabrication (Agrawal et al. 2014), and other aspects of building
design, engineering, and construction have been done. Innovative architecture and engineer-
ing firms are currently implementing visual programming languages into their workflows, and
active users will continue to expand their applicability and functionality. Incorporating this
ability within building information modeling is not only possible, but will become increas-
ingly common in both academia and the building profession.

Notes
The mentioning of different software programs does not imply endorsement of any

product. The software names are trademarked by their respective companies.

Acknowledgements
Arduino project –W. Kahn, student researcher
Dynamo bridge and shading devices – students in Architecture 507 class (2014 and 2015)
Rhino 3D / Grasshopper and Revit / Dynamo project – K. Konis (co-PI), A. Gamas, G.

Gao, J. Milian, I. Toldo, and M. Hijazi, and J.Staller at TRC Solutions, “Leveraging BIM
and Scripting for Passive Design Parametric Analysis.” Funding was supplied through TRC
Solutions by a SoCal Gas IDEEA CSDP grant to fund university research on passive and
low energy strategies to assist the non-residential commercial market in achieving sustain-
ability, zero net energy (ZNE), and thermal comfort.

References
Agrawal, H., Jain, R., Humar, P., and Yammiyavar, P. 2014. “FabCode: visual programming environment for

digital fabrication,” IDC ‘14: Proceedings of the 2014 conference on interaction design and children, pp.
353-356, ACM New York, NY, ISBN: 9781450322720 doi>10.1145/2593968.2610490.

Aksamija, A., Guttman, M., Rangarajan, H. P., and Meador, T. 2011. “Parametric control of BIM elements
for sustainable design in Revit: linking design and analytical software applications through customization,”
Perkins+Will Research Journal, 3 (1), p. 32.

Asl, M. R., Bergin, M., Menter, A., and Yan, W. 2014. “BIM-based parametric building energy performance
multi-objective optimization, Fusion: Proceedings of the 32nd eCAADe Conference - Volume 2, Department
of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne,
England, UK, 10-12 September 2014, pp. 455-464.

Briscoe, D. 2014. “Parametric planting: green wall system research + design using BIM,” ACADIA 14: Design
Agency: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Archi-
tecture (ACADIA), ISBN 9781926724478, Los Angeles 23-25 October, 2014), pp. 333-338.

Celani, G. and Vaz, C. 2011. “CAD scripting and visual programming languages for implementing computa-
tional design concepts: a comparison from a pedagogical point of view. International Journal of Architectural
Computing (IJAC) Volume 10, Issue 1, pp. 121- 137.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

	 Journal of Green Building� 43

Davis, D. 2013. “Modelled on software engineering: flexible parametric models in the practice of architecture,”
PhD dissertation, RMIT University, http://www.danieldavis.com/thesis/, pg. 161.

Gamas, A., Konis, K., and Kensek, K. 2014. “A parametric fenestration design approach for optimizing thermal
and daylighting performance in complex urban settings.” ASES/Solar 14 Annual Conference, San Francisco,
CA, July 2014.

Jabi, W. 2014. “Parametric spatial models for energy analysis in the early design stages,” SimAUD ‘14: Proceed-
ings of the Symposium on Simulation for Architecture & Urban Design, Article No. 16, Society for Com-
puter Simulation International, San Diego, CA.

Kensek, K. 2014. “Got macros? Scripting and coding for BIM,” AECbytes Viewpoint #70, May 22, 2014, http://
www.aecbytes.com/viewpoint/2014/issue_70.html. Also published in AECbytes Magazine, Q2 2014.

Kensek, K. 2014. “Integration of environmental sensors with BIM: case studies using Arduino, Dynamo, and the
Revit API,” “Integración de sensores medioambientales con BIM: casos de estudio usando Arduino, Dynamo,
y Revit API.” Informes de la Construcción. Vol. 66, 536, e044 octubre-diciembre 2014 ISSN-L: 0020-0883,
pp. 31 – 39. doi: http://dx.doi.org/10.3989/ic.13.151.

Kensek, K. and Henkhaus, A. 2013. “Solar access zoning + building information modeling,” ASES National
Solar Conference, Baltimore, MD, April 2013.

Kensek, K. and Knowles, R. 1997. “Solar access zoning: computer generation of the solar envelope,” ACSA
Southwest Regional Meeting Proceedings, October 1997.

Konis, K. and Kensek, K. 2015. “Leveraging BIM and scripting for passive design parametric analysis,” SoCal
Gas Commercial Sustainable Development Program Innovative Design for Energy Efficiency Activities
(IDEEA) grant. Prepared for Jeff Staller, CEM, LEED AP, Associate Technical Director, Building Science,
TRC Solutions. Technical report.

Kron, Z. 2014. The bridge project was based on Kron’s bridge developed in Dynamo, https://www.youtube.
com/watch?v=pgPLlFSqI6Y, published on June 6, 2014, last accessed May 26, 2015.

Leitão, A. and Santos, L. 2011. “Programming languages for generative design: visual or textual?,” Respecting
Fragile Places, 29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana,
Faculty of Architecture (Slovenia) 21-24 September 2011, pp. 549-557.

Makris, M., Gerber, D., Carlson, A., and Noble, D. 2013. “Informing Design through parametric integrated
structural simulation: iterative structural feedback for design decision support of complex trusses,” eCAADe
2013: Computation and Performance – Proceedings of the 31st International Conference on Education and
Research in Computer Aided Architectural Design in Europe, Delft, The Netherlands, September 18-20,
2013, ISBN: 978-94-91207-04-4 (vol. 1) · 978-94-91207-05-1 (vol. 2).

Maleki, M., Woodbury, R., and Neustaedter, C. 2014. “Liveness, localization and look-ahead: interac-
tion elements for parametric design,” DIS ‘14: Proceedings of the 2014 Conference on Designing Inter-
active Systems, Vancouver, BC, Canada, pp. 805-814, ACM New York, NY, ISBN: 978-1-4503-2902-6
doi>10.1145/2598510.2598554.

Miller, N. 2009. “Parametric strategies in civic architecture design,” Proceedings from the 29th Annual ACADIA
Conference. pp. 144-152.

Miller, N. 2014. Post on Miller’s blog, “Introducing RHYNAMO: Apply for BETA Testing!” (Friday, August 22,
2014). Last accessed May 28, 2015.

Negendahl, K. 2015. “Building performance simulation in the early design stage: an introduction to integrated
dynamic models,” Automation in Construction, Volume 54, June 2015, pp. 39-53.

Ogueta, C. 2012. “User innovation in digital design and construction: dialectical relations between standard
BIM tools and specific user requirements,” thesis, MS Architecture Studies, MIT, June 2012.

Wurzer, G. and Pak, B. 2012. “Lawnmower: Designing a web-based visual programming environment that gen-
erates code to help students learn textual programming,” Digital Physicality: Proceedings of the 30th eCAADe
Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Archi-
tecture (Czech Republic) 12-14 September 2012, pp. 655-663.

Zarzycki, A. 2012. “Parametric BIM as a generative design tool,” Digital Aptitudes: ACSA Conference, Boston, MA.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-29 via free access

